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Proemial

The nature of weak intermolecular interactions between atoms and molecules is investigated.
There is a great deal of interest in such atom-molecule complexes because of their importance
in the description of astrophysical phenomena in interstellar clouds and in the description of
entrance channels to chemical reactions. This Thesis is focused mainly on interactions involving
open-shell moieties.

Before going into details, it is crucial to have a basic understanding of the concepts that
define the basis of the theoretical description of processes of interest here.

Molecules and clusters of molecules may be viewed as aggregates of electrons and nuclei.
Nuclei are much heavier than electrons so their motion is much slower. One can thus consider
the motion of electrons in a molecule as if the nuclei had fixed positions in space. The motion
of the nuclei, on the other hand, is in an mean field due to the fast motion of electrons. This
allows us to separate the motion of the electrons and the nuclei. This approximation is well
known as the Born-Oppenheimer (BO) approximation.

Solving the Schrodinger equation for the electronic motion for a set of fixed positions of
the nuclei gives as a result, using mathematical technics, the potential energy hypersurface -
electronic energy for all possible nuclear positions in space. The global minimum value of the
potential energy hypersurface determines the equilibrium structure of the molecular system.

There are cases, where the BO approximation breaks down and the idea of single potential
energy surfaces is not longer valid. In Thesis such cases are considered, where for open-shell
systems one needs more than one potential energy hypersurface for their proper description.

The potential energy hypersurface can be, in general, divided into two regions, a short
range region, where there is strong overlap of the monomers wave funtctions, and a long range
part, where the overlap is negligible. The short range is dominated by the so-called exchange
interaction and it becomes repulsive at small separations of the monomers in the dimer. This
exchange interaction has purely quantum origin as a consequence of the Pauli principle.

The long range interaction energy is determined by three contributions, electrostatic, in-
duction and dispersion contribution. The latter one is quantum mechanical in nature. Those
three contributions are called together Van der Waals forces. If the system is kept together by
this weak interactions it is called a Van der Waals complex.

Electronic structure calculations wich have no use of empirical parameters are called ab initio
methods. The basic method is the Hartree-Fock method wich uses one-electron approximation
and than there are many methods to account for correlation of motions of the electrons.

Since the nuclei have finit mass, one can be interested in dynamics of the molecular skele-
ton. This dynamics requires knowledge of the potential hypersurface(s) determined from ab
initio calculations or, alternatively, from other sources including experimental one as well. The
dynamical calculations solve the Schrodinger equation for the nuclear motion. As a result we
have ro-vibrational energies and wave functions of the states of the molecular system. Gaining
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information about wave functions one can calculate a set of molecular properties using quantum
mechanical theorems concerning observables.



CHAPTER I

Introduction

An understanding of reactive interactions at the fundamental level has been one of the
central goals of physical chemistry. As has been recognized since the early days of transition
state theory, the shape of the Potential Energy Surface (PES) dictates the reaction rate and the
processes of energy disposal in the products. Today’s reaction dynamics makes the connection
between the overall shape and the particular features of the PES, such as barriers or local wells,
and a success or failure of reactive events.! The understanding of this relationship allows us not
only to predict the probability of reactive events, but also opens up a possibility of influencing
the course of reactions by selectively modifying certain regions of PES.?2 One way to achieve a
control of the reaction outcome is by orienting molecules and their orbitals as they approach
one another.® Such attempts give rise to the emerging field of stereodynamics.* Another way
of achieving prealigned systems is via the formation of a van der Waals system.?

In these exciting developments the interactions involving open-shell radicals or excited state
species are invaluable model systems. A modeling of PESs of reactive interactions from the
first principles is a very challenging proposition. Such a modeling must include the long-range
part, which in the opinion of some’® represents "one of the hardest regions to study, both
experimentally and theoretically". Furthermore, it should be able to cope with the areas of
incipient chemical bonding, where our understanding is incomplete at best. Finally, it must
include the transition-state region where the expertise in all the types of interactions: covalent,
non-covalent, and intermediate between them, is required. Recent advances in crossed beam
techniques coupled with spectroscopic methods have allowed for the monitoring of the reaction
dynamics at a completely state-resolved level of detail.” High resolution supersonic jet spec-
troscopic techniques have been successfully employed to probe weakly bound molecules trapped
in the wells due to the van der Waals or hydrogen-bond interactions.®® The measurements of
photofragment angular distributions resulting from the state-specific excitation have allowed
the determination of dissociation energies in hydrogen-bonded complexes, such as (HF), and
its deuterated analogs.!? State-to-state studies of laser excited vibrational transitions in prere-
active molecular beams show that vibration excitation is sufficient to send reactants over the
reaction barrier.'!

The open-shell species play a particularly important role in these studies because they open
reactive channels on the PES making them much more complex. The long-range forces which
operate in the entrance and exit channels can significantly affect the outcomes of chemical re-
actions. For example, orienting the reactants as they approach one another can increase the
probability of reactive collisions. Conversely, if an entrance channel contained an attractive
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well before the barrier, the formation of long-lived collision complexes could lower the reac-
tion probability. The elucidation of the effect the open-versus closed-shell species have in the
interaction potential, and consequently, on the reaction dynamics is, thus, of fundamental im-
portance. The interactions involving open-shell species are, in principle, more anisotropic than
closed-shell interactions. The presence of unpaired electrons may induce a new type of elec-
tronic anisotropy which is absent in the closed-shell case. For example, the interactions between
two closed-shell atoms are fully angle-independent (isotropic), whereas the interactions between
closed-shell and P-state atoms display angular dependence in many ways similar to that which
is present, in molecules. This electronic anisotropy plays a fundamental role in determining the
strength and directionality of intermolecular forces, and leads to their description in terms of
a manifold of potential energy surfaces.'?

Generally PESs can either be extracted from the spectroscopic measurements via the so-
called inversion procedures or calculated from first principles (ab initio) by solving an approx-
imate electronic Schrédinger equation. However, in the case of open-shell interactions the
inversion is very difficult because the spectroscopy does not sample a single PES, and it may
be further complicated by the presence of the spin-orbit coupling and a possible breakdown of
the Born-Oppenheimer approximation.'® In such circumstances, the ab initio approaches for
the calculations of PESs for open-shell interactions represent an invaluable resource.

Over the last decade, the interest in open-shell Van der Waals complexes has been steadily
growing, as documented by recent experimental'*'> and theoretical '®'7 review papers. Yet,
the area is far from being well-travelled, and the relevant literature is scarce. The most impor-
tant developments in the ab initio theory of such complexes came esentially from two centers:
from Alexander, Werner, and collaborators, and from Cybulski, Chatasinski, Szczesniak, and
collaborators. In the seminal papers on Hs+B and Hy+O, Alexander and coll. applied su-
permolecular MRCI approach to calculations of adiabatic and nonadiabatic PESs. Since then,
this approach has been applied to a variety of systems .'*2° However, the major problem
with the MRCI method is the virtual impossibility of ensuring consistent treatment of the
cluster and constituent monomers. It should be stressed, however, that this is often the only
viable approach when one has to deal with a manifold of closely lying PESs, especially of the
same symmetry. Cybulski and coll. proposed a different approach. In the Cl,+He paper?!
, an intermolecular version of unrestricted Moller-Plesset perturbation theory was described
and implemented. Its combination with the UCCSD(T) was succeessfully applied to many
open-shell Van der Waals species:He-CH,?2Ar-O5,% Ar-NH,?* He-NO,? Ar-OH.?°® The method
proved to be very accurate but revealed problems when dealing with several states of the same
symmetry, especially in the presence of avoided crossing.

1.1 The goals and the structure of thesis

The major theme of this thesis is application of ab initio methods to model the manifold
PESs arising in the interaction of an open-shell atom with a closed-shell system; in particular,
in the case of an open-shell cluster which involves two states of the same symmetry.

To realize this goal a variety of systems have been selected, which are appropriate as rep-
resentative models, but also interesting per se, accessible to experimental determination of
calculated properties.

The first class of complexes was composed of closed-shell systems, for which the templates
of PES and fitting techniques were proposed and mastered. It included Ar-HCN and Ar-CO,
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Van der Waals systems. Comparison with the experimental measurements of the spectra and
bulk properties asserted to the very good quality of ab initio results. These works are described
in Chapters II and III, respectively.

The second class included atom-Rg complexes (Rg-Rare Gas). These systems serve as a
bridge between the Van der Waals interaction and chemical bond. Since they are relatively
simple, one may perform calculations which are at the high-end of the state-of-the-art ab initio
approach. Their accuracy if not surpassing is certainly not worse than that of experimental
determinations. This work is described in Chapter IV

The third class included halogen-molecule complexes: Cl+HCI, Cl4+H,, F+H, and Br+H,
which are well known models that are widely used in simulations of abstraction reactions. In
contrast to previous studies of these sytems, which aimed at globally valid PESs with compro-
mised accuracy in the Van der Waals region - in this Thesis the focus has been on obtaining
very accurate description of the Van der Waals complex in the entrance channel to the reaction,
and neglecting the reactive region itself. These works are described in Chapters V, VI, VII
and VIII. They constitute the most important contribution to this Thesis.



CHAPTER II

Structure and dynamics of Ar-HCN Van der Waals
complex

2.1 Introduction

Complexes of a rare gas atoms with the HCN molecule have been the subject of many studies
by both experimentalists and theorists - see e.g. the bibliography of the recent of Toczytowski
et al. 27 In the context of this Thesis, the Ar-HCN complex, as well as the Ar-CO, complex
described in the next Chapter have provided a testing grounds to design and master algorithms
and techniques of modeling PES from accurate ab initio calculations. Their closed-shell rather
than open-shell character is irrelevant since the templates for and fitting of the PES are general
as the major components of the interaction: exchange, electrostatics, induction and dispersion
are essentially the same. More importantly, in contrast to open-shell systems, there is a plethora
of experimental data to verify the ab initio results.

In order to obtain the spectra, the Author implemented a collocation algorithm, calculated
several lowest rovibration levels, and analysed rovibration wave functions. The agreement with
the experimental proved to be good, and the paper has become the important reference for later
experimental works, e.g. Ref. 2® Recently, the potential for Ar-HCN has been quantitatively
improved upon by Toczytowski et al.,” but the major results of our paper have remained valid.

2.2 Collocation dynamics

Calculations of rotation vibration eigenvalues and eigenfunctions were performed using the
collocation method?*3% The Hamiltonian for the Ar-HCN complex in the body-fixed reference
frame can be written in the form:3!
~ 0 0 oL N2 .

A=-"_Yp2 (J _ ) H, +V (R0 2.1
2 or" R T o I 7)) FHAVIRS) (2.1)

where p is the reduced mass of the complex calculated from the masses of the HCN molecule
and the Ar atom, 1=J- J is the angular momentum operator associated with the end-over-end
rotation of the complex, J is the total angular momentum operator of the complex, j is the
angular momentum operator of the HCN molecule, H, is the rotational Hamiltonian of the free
monomer, and V' (R, 6) is the intermolecular potential. The intramolecular coordinates of HCN
were kept constant in all calculations and were assumed to be separable from the intermolecular
coordinates.
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2.3 Ab initio potential

The ab initio points were fitted to a two-dimensional model potential that was divided into
the short Vy;, (R, ) and the asymptotic Vs (R, 6) parts,

V(R,0) =V (R,0) + Vus (R, 0) (2.2)
The short range potential consisted of the exponential function,

1
SR - 2.
TER (cos9) (2.3)

Nonlinear parameters in the exponent depend on the angular variable in the following way

L

o (0) = ; aj\/%f’f (cos0) (2.4)

and

1 0
B(0) = Z;ﬁj\/ﬁpj (cos 6) (2.5)

J

In all expansions L = 5.
The asymptotic part included a damped-dispersion expansion, that was truncated at the
R term, i.e., ez = 7,

Nmaz Jmaz
Ch.j 1
Ve (R0 =Y S D.(BO)R)
n=6 j=0,2,... R 2]+1

orj=1,3,...

P} (cos 9) (2.6)

where D,, function was the damping function of Tang-Toennies®? and for

n k
-3 T
k=0

Dispersion coefficients C,,; were obtained from a least squares fit. The maximum absolute error
of the fit did not exceed 0.75%. The contour plot of the PES is shown in Publication I (see
Sec. 2.6). The fitting was performed with the modified code of Bukowski et al.?* The chosen
functional form was found to provide an accurate representation of ab initio results, and that
is why it was adopted. For example, the fitted surface showed the existence of a small barrier
between two local minima, which was later verified by ab initio calculations. The root-mean-
square and the maximum errors of the fit amount to 0.16 and 0.54 cm™!, respectively.

2.4 Strategy of solving eigenvalue problem for Hamiltonian

The strategy of solving the eigenvalue problem for the Hamiltonian given by Eq. 2.1 is
that of Peet and Yang.?® A trial wave function of the dimer must be expanded in a basis set
that provides a good description of the dynamics for J = 0,1,2. A direct product basis of a
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normalized Legendre polynomial in cos # and distributed Gaussians in R is suitable in this case,
and the wave function ¥ takes the form 2.8

J J Npr Np—1

U(R0) =333 3 Cunaior (B) P (cost) (23)

e=0 Q=€ 1=1 n=0
where

24; _, y:
i (R) = {| e Aiti=)” (2.9)
T
and the parameters A; are specified by the recipe of Hamilton and Light. 2 Inserting the trial
wave function into Schrédinger equation with Hamiltonian 2.1 gives equation from which the
expansion coefficient and eigenvalues can be determined:

Np Np—1

Y33 (H=E)@i(R) B (cos ) Ceing = 0 (2.10)

e=0 Q=€ =1 n=0N

The traditional way of solving eigenvalue problem in 2.10 is to multiply the equation by
¢ir (R) P} (cos @) and integrate over coordinates. This procedure require integration of the
potential V' to obtain potential matrix elements within basis functions of expansion of 2.8.
Following Peet and Yang 3* collocation method simplifies the step of determination of Hamilto-
nian matrix elements by forcing equation 2.10 to be exact at N X Np grid points. This gives
collocation method eigenvalue problem in form of 2.11 solved by direct diagonalization:

J J Np Np—1
ZZZ Z (H — E) ¢; (Rir) P (c08 0,) Ceing = 0
e=0 Q=€ i=1 n=0

i =1,...,Ng; n'=0,...,Np—1 (2.11)

The number of angular, Ny , and radial, Ng , functions was equal to (10,30) and (30,65) in two
consecutive runs. The largest difference for the first six eigenvalues was less than 0.0042 cm™!.
The collocation points in an angular variable were chosen to be the Gauss Legendre points of
the order Ny . Gaussian-type radial functions were equally distributed between 3.0 and 16.0
ap .

2.5 Eigenvalues and Eigenfunctions

The energies of eigenstates from collocation calculations are reported in Publication I along
with contours of several lowest eigenfunctions.
It is useful to view squares of eigenfunctions multiplied by the Jacobian R?sinf. This
quantity is present in calculations of various expectations values and is defined below:
piv (R,0) = V]

3Jv

(R,0)Y;,, (R,0) R?sin6 (2.12)

Figure 2.1 shows the ground state pggo density for the Ar-HCN system. It is clearly seen that
the Ar atom is located in the vicinity of the colinear global minimum on the potential energy
surfaces. The peak of this density is narrow and it id cause by fact that Ar atom is quite heavy.
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Figure 2.1: pggg for the Ar-HCN van der Waals complex
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2.6 Publication I: J. Chem. Phys, 110, 1416 (1999)
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The potential energy surfaces for the ground state of the Ar—HCN complex have been calculated at
several levels of theory, including the single and double excitation coupled-cluster method with
noniterative perturbational treatment of triple excitation CCSD(T). Calculations have been
performed using the augmented correlation-consistent polarized triple zeta basis set supplemented
with bond functions (aug-cc-pVTZ+bf). The global minimum with a well depth of approximately
141 ecm™! has been found for the linear Ar—H-C-N geometry (®=0.0°) with the distance R
between the Ar atom and the center of mass of the HCN molecule equal to 8.52a,. In addition, the
potential energy surface has been found to contain a long channel that extended from the bent
configuration at R=7.39a, and ®=59.7° (a well depth of 126 cm™') toward the T-shaped
configuration with R=7.16a, and ®=107.5° (a well depth of 121 cm™!). The interaction energies
have been analyzed using perturbation theory of intermolecular forces. The location of the global
minimum is determined by the anisotropy of the dispersion and induction effects. The ground
vibrational state dissociation energy D determined by the collocation method has been found to be
105 ¢cm™'. The wave number of the >, bend amounts to 4.2 cm~ !, somewhat below the
experimental value (5.5 cm™"). © 1999 American Institute of Physics. [S0021-9606(99)30303-2]

. INTRODUCTION

The Ar—HCN van der Waals complex, along with the
isoelectronic Ar—HCCH, are the simplest prototype systems
for exploring characteristic force fields around rod-like mol-
ecules. Ar—HCN has been the subject of extensive experi-
mental studies. Originally, pure rotational transitions in the
ground state X, were measured by Leopold et al.,! and re-
fined and extended later by other researchers.™ The lowest
excited 2, and IT, bending states were measured by Cooksy
et al.* and Drucker er al.> The combined data for 3, 3,
and II, states reflect virtually the entire angular coordinate
along the radial minimum of the potential and provide a
reliable benchmark for ab initio calculations.

The high resolution spectroscopic experiments have
stimulated several theoretical investigations with various
empirical,” semiempirical,® and ab initio models.”® In par-
ticular, a state-of-the-art ab initio potential energy surface
(PES) obtained with a large basis set at the fourth-order
(MP4) level of Méller—Plesset perturbation theory has been
recently reported by Tao et al.® The rovibrational transition
energies and spectroscopic constants calculated using the po-
tential energy function fitted to the MP4 interaction energies
agreed very well with the experimental results. It was, how-
ever, concluded that ‘‘considerable errors, especially in the
potential anisotropy, still exist in the MP4 potential.” ® It
was also suggested that the monomer-bending vibration has
a considerable effect on the potential anisotropy.

Taking into account the intramolecular vibrations is,
however, a challenging problem for ab initio calculations

YElectronic mail: cybulssm@muohio.edu

0021-9606/99/110(3)/1416/8/$15.00

1416

and requires one to deal with a six-dimensional problem in-
stead of a two-dimensional one. Before one can seriously
address this, it is worthwhile to improve the results for a
rigid monomer model. In other words, to establish how the
refinement of electron correlation treatment and a further ex-
tension of the basis set affects the potential and the related
spectroscopic properties.

The goal of this work was to improve the quality of the
PES of the Ar—HCN complex. To accomplish this, we ap-
plied the supermolecule single and double excitation
coupled-cluster theory with noniterative perturbational treat-
ment of triple excitation CCSD(T),” in combination with an
augmented correlation-consistent triple zeta (aug-cc-pVTZ)
basis set,'’"!? supplemented with a set of bond functions.
Symmetry-adapted intermolecular Mdller—Plesset perturba-
tion theory (I-MPPT) formalism'® was used to understand
the source of intermolecular interaction and anisotropy in
Ar—HCN. In addition, the rovibrational characteristics of the
ground and excited %, and II, bending vibrational states
were calculated by means of the collocation dynamics.'*~"7

Il. METHODOLOGY

The interaction energy in every order of supermolecule
Méller—Plesset perturbation theory (MPPT) and its infinite-
order coupled-cluster (CC) generalizations is obtained as the
difference between the value of the energy of the complex
(E4p) and the sum of the energies of its constituents (E,
+Ep)

AE=E,3—(E,+Ejp). (1)

© 1999 American Institute of Physics
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J. Chem. Phys., Vol. 110, No. 3, 15 January 1999

Interaction energies at different levels of theory will be iden-
tified by appropriate superscripts, e.g., A EC“SP(M will denote
the interaction energy at the CCSD(T) level of theory. In the
case of the MP2 interaction energy, which is given by

AEMP2= AESF+ AE®); (2)

also, the second-order correlation correction, AE®, will be
examined.

The SCF supermolecule interaction energy as well as the
second- and higher-order correlation corrections to AESCF
can be related to the sum of the appropriate electrostatic,
induction, dispersion, and exchange energies obtained from
intermolecular Mdller—Plesset perturbation theory. Details of
this approach which makes it possible to analyze the super-
molecule results in terms of physically meaningful contribu-
tions to the interaction energy can be found elsewhere, 820
so here we only give a brief summary. The contributing en-
ergies in the I-MPPT expansion are denoted by €, where i
and j refer to the order of the intermolecular interaction op-
erator and the intramolecular correlation operator, respec-
tively.

AESCF is most conveniently analyzed as the sum of the
Heitler—London energy (AE™L) and the SCF deformation

energy (AES),

AESF= AEM+ AESH, 3)

where AEM denotes the sum of the electrostatic (€!”) and
exchange (egL) energies,

HL_ _(10), _HL
AE™ = Eés )+ €cx s 4)

and AEgng denotes the induction energy properly restrained
by intermolecular exchange effects. At distances where in-
termolecular overlap is small and the intermolecular ex-
change effects can be neglected, AE gng can be approximated
by the second-order induction energy with response effects
(€hnar)-

In addition to the electrostatic, exchange, and deforma-
tion energies, AE® also includes the dispersion energy so
an analysis of the supermolecule MP2 results must be based
on Egs. (3) and (4) and the following relationship:

AE® =2+ egggg +AED +AER), (5)

where 622,) denotes the second-order electrostatic correlation
energy with response effects and efi%sog denotes the second-
order dispersion energy. The remaining terms, AES() and
AER), describe, respectively, the second-order deformation
correlation correction to the SCF deformation and the
second-order exchange correlation.

The coordinate system used for the Ar—HCN complex is
shown in Fig. 1. R denotes the distance between the center of
mass of the HCN molecule and the Ar atom, and ® corre-
sponds to the angle between the R vector and the bond axis
of HCN. ®=0° corresponds to the Ar—H-C-N colinear
arrangement. The equilibrium structure of HCN remains
somewhat uncertain?' and several different sets of CH and
CN bond lengths can be found in the literature. We used the
equilibrium distances given by Strey and Mills,?? which are
essentially the same as the earlier values of Winnewisser
et al.®® and very similar to the most recent values of Carter
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FIG. 1. The coordinate system used for Ar—HCN.

et al® The H-C and C—N bond lengths were set at 1.0655
and 1.1532 A, respectively, and were kept constant in all
calculations.

Calculations of the potential energy surface of the Ar—
HCN complex were performed at the CCSD(T) level of
theory using the frozen core approximation. Automatically,
we also obtained the MP2 and CCSD results. The counter-
poise method of Boys and Bernardi?* was used to avoid the
basis set superposition error (BSSE). Supermolecule calcula-
tions, for the most part, were performed with MOLPRO 96
program,25 with the exception of a few cases when
GAUSSIAN 94 package®® was used. Perturbation calculations
were performed with TRURL 94 program.?’

In our preliminary calculations we tested two different
basis sets: a well-tempered basis set (WT) similar to the one
used by Tao et al.,’ and the augmented correlation-consistent
triple zeta (aug-cc-pVTZ) basis set of Dunning et al 012
Both basis sets were supplemented with a set of bond func-
tions [3s3p2d]*® centered in the middle of the R vector. We
will denote these basis sets as WT+bf and
aug-cc-pVTZ+bf. The former contained the following con-
tractions: H: [5s3pld], C and N: [7s5p3d], and Ar:
[7s4p2d1f]. The latter contained the original contractions of
Dunning et al.:'%'2 H: [4s3p2d], C and N: [5s4p3d2f], and
Ar: [6s5p3d2f]. Overall, the WT+bf and aug-cc-pVTZ+bf
basis sets contained, respectively, 151 and 187 contracted
Gaussian functions. Despite the use of bond functions the
differences between the interaction energies obtained with
these two basis sets were rather large. For example, in the
vicinity of the global minimum at R=8.6a, and ® =0°, we
found from calculations in which all electrons were corre-
lated that AESSP was equal to —597uE, when the
WT-+bf basis set was used and to —641uE, when the
aug-cc-pVTZ+Dbf basis set was used. The latter value is ex-
pected to be closer to the complete basis set limit, but we did
not perform calculations with any larger basis sets to verify
this. Indirect evidence comes from a comparison of binding
energies of the Ar—HF complex. It was found® that the
aug-cc-pVTZ+bf basis set gave the binding energy only
0.34% smaller in magnitude than the value obtained with a
lot larger aug-cc-pVS5Z basis set.’® Furthermore, the use of
the aug-cc-pVQZ+bf basis set resulted in the lowering of the
aug-cc-pVTZ+Dbf interaction energy by only 0.50%. It thus
appears that the aug-cc-pVTZ+bf basis set is an excellent
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compromise between the quality and efficiency of calcula-
tions and because of that we adopted it in the present work.

Ill. COLLOCATION DYNAMICS

Calculations of rotation—vibration eigenvalues and
eigenfunctions were performed using the collocation
method."*~'7 The Hamiltonian for the Ar—HCN complex in
the body-fixed reference frame can be written in the form>!

nt 9 g h?

y__ v 7 27+7 A_,_\2+A+
(6)

where u is the reduced mass of the complex calculated from

the masses of the HCN molecule and the Ar atom, I= J —f' is
the angular momentum operator associated with the end-

over-end rotation of the complex, J is the total angular mo-
mentum operator of the complex, ; is the angular momentum

operator of the HCN molecule, I:IX is the rotational Hamil-
tonian of the free monomer, and V(R,®) is the intermolecu-
lar potential. The intramolecular coordinates of HCN were
kept constant in all calculations and were assumed to be
separable from the intermolecular coordinates.

The ab initio points were fitted to a two-dimensional
model potential that was divided into the short range
Van(R,0) and the asymptotic V,(R,0) parts,

V(R,®)=V4(R,0)+ V,(R,0). (7)
The short range potential consisted of the exponential func-
tion,

Va(R.0)=G(R,0)eP @~ FOK, ®)
where D(0), B(0®), and G(R,0) were all expansions in
Legendre polynomials, P?(cos 0). Their explicit forms were

L
X(®)=[ZO x%P%(cos @), )

for D(®) and B(®) (X=D or B) and
L
G(R.®)=2, (go+8\R+gyR>+gsR*)P(cos ©).
=0
(10)
In all expansions L=35.

The asymptotic part included a damped-dispersion ex-
pansion, that was truncated at the R™7 term, i.e., M max=1>

Vas(R.9)

— 2 n
02.... R" \2i+1

N

=

0!/

fa[B(O)R] P(cos ©),

n=6 |I=
or [=1,3,...
(11)
and included the Tang—Toennies damping function (f,),*?
nok
—Xx x
fal)=1=e*> = (12)
=o k!

and dispersion coefficients C 2/ obtained from a least squares
fit. The maximum absolute error of the fit did not exceed

13
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0.75%. The parameters of the potential functional form are
available upon request from the authors. The fitting was per-
formed with the modified code of Bukowski ef al.**** The
chosen functional form was found to provide an accurate
representation of ab initio results, and that is why it was
adopted. For example, the fitted surface showed the exis-
tence of a small barrier between two local minima, which
was later verified by ab initio calculations. The root-mean-
square and the maximum errors of the fit amount to 0.16 and
0.54 cm™ !, respectively. We have also refitted the ab initio
results of Tao et al., since their representation was less accu-
rate.

The strategy of solving the eigenvalue problem for the
Hamiltonian given by Eq. (6) is that of Peet and Yang.!® A
trial wave function of the dimer must be expanded in a basis
set that provides a good description of the dynamics for J
=0,1,2. A direct product basis of a normalized Legendre
polynomial in cos ® and distributed Gaussians in R is suit-
able in this case, and the wave function ¥ takes the form

J
V(R,0)=2 X

e=0 Q=€ i=

R Nr—1
EQ CeinQ‘Pi(R)P,?(COS @),
n=
(13)

where

4 [2A; 2
QiR)=\]"_" e MR (14)

and the parameters A; are specified by the recipe of Hamilton
and Light.14 The number of angular, N, and radial, N,
functions was equal to (10,30) and (30,65) in two consecu-
tive runs. The largest difference for the first six eigenvalues
was less than 0.0042 cm !, The collocation points in an an-
gular variable were chosen to be the Gauss—Legendre points
of the order N, . Gaussian-type radial functions were equally
distributed between 3.0 and 16.0a .

IV. RESULTS AND DISCUSSION
A. Features of total PES

The interaction energies at the SCF, MP2, CCSD, and
CCSD(T) levels of theory obtained with the
aug-cc-pVTZ+Dbf basis set are reported in Table I. We give
this extensive set to allow other researchers to use the origi-
nal results for developing their own model potentials. Our
calculations probed the potential energy surface most exten-
sively for intermolecular distances in the interval from 7.0a,
to 10.0a,, and 11 angles in the range from 0° to 180°. For
some angles, calculations were performed for additional dis-
tances of 6.0, 6.5, 12.0, and 15.0a,. Several additional cal-
culations were done in the vicinity of the global minimum
(R~8.5a,, ®=0°). The PES, which is shown in Fig. 2, was
fitted to the analytic function described earlier. The global
minimum with a well depth of approximately 141 cm '
(6421 E};) was found on the CCSD(T) surface for the linear
Ar—-H-C-N geometry (®=0.0°) at R=8.52a,. The well
depth found in a frozen core calculation is smaller than the
well depth found in a core—valence electron-correlated cal-
culation by approximately 1% and larger basis sets are not
expected to change this. The error due to basis set incom-
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TABLE 1. SCF, MP2, CCSD, and CCSD(T) interaction energies (in wE})

of the Ar—HCN complex at different values of ® and R.
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TABLE L. (Continued.)

@(o) R(ao) AESCI—' AEMPZ AECCSD AECCSD(T)
0 7.0 8962.1 5076.4 5864.9 53219
75 3196.3 820.5 1269.8 923.7
8.0 1028.9 —442.6 —177.5 —397.9
8.4 356.5 —658.2 —478.6 —632.4
8.5 261.9 —664.0 —500.6 —641.2
8.6 186.5 —659.4 —510.0 —638.6
8.7 126.8 —646.6 —509.8 —627.5
9.0 14.2 —580.0 —473.4 —563.9
10.0 —57.8 —320.6 —269.6 —309.1
12.0 —21.4 —89.0 —73.6 —83.3
15.0 -5.8 —-19.8 -16.3 —18.3
20 7.0 6036.4 2826.5 3451.6 3004.6
7.5 2162.0 178.2 548.5 262.5
8.0 692.0 —551.8 —3233 —506.7
8.5 168.0 —625.0 —478.7 —597.0
9.0 -0.7 —517.4 —419.2 —496.4
10.0 —46.7 —281.3 —232.6 —267.2
40 7.0 2313.5 165.9 594.4 299.7
7.5 824.4 —540.4 —265.3 —457.3
8.0 255.5 —623.0 —443.1 —568.7
8.5 52.2 —525.2 —402.6 —485.5
9.0 —123 —398.9 —313.7 —369.2
10.0 —26.8 —210.8 —167.5 —193.6
60 6.5 2341.3 —69.5 472.1 153.6
7.0 905.5 —630.2 —280.6 —488.7
7.5 327.1 —659.3 —433.6 —569.9
8.0 103.1 —542.1 —392.0 —482.2
8.5 21.3 —410.2 —306.7 —367.2
9.0 =55 —300.3 —227.2 —268.4
10.0 —12.2 —156.8 —120.0 —140.1
12.0 —53 —48.5 —37.0 —429
15.0 -1.7 —11.7 -92 —10.6
80 6.0 3723.5 468.4 1249.9 841.2
6.5 1512.9 —519.1 -30.5 —294.5
7.0 594.2 —691.3 —379.7 —551.3
7.5 221.3 —605.2 —403.0 =515.5
8.0 74.3 —468.4 —333.4 —408.2
8.5 18.9 —343.8 —253.1 —303.5
9.0 -0.5 —247.7 —185.8 —220.3
10.0 -6.8 —121.3 —98.4 —115.1
90 6.0 3555.0 358.9 1134.7 738.4
6.5 1439.4 —544.6 —61.9 -317.2
7.0 563.7 —686.7 —380.2 —545.9
7.5 209.3 —593.4 —394.6 —503.3
8.0 69.9 —456.0 —3243 —396.5
8.5 17.4 —3359 —245.7 —294.4
9.0 -09 —241.8 —180.4 —213.8
10.0 -6.8 —128.6 —95.9 —112.7
12.0 -3.0 —44.0 —30.2 —35.6
15.0 -0.7 —6.3 =73 —83
100 6.0 3693.0 448.0 1239.4 840.1
6.5 1484.8 —523.5 —-329 —290.0
7.0 576.3 —687.2 —376.2 —543.0
7.5 211.0 —599.2 —397.7 —507.0
8.0 68.5 —462.6 —328.5 —401.2
8.5 154 —339.7 —249.3 —2984
9.0 —2.8 —246.8 —183.3 —217.0
10.0 —8.1 —129.5 —-97.5 —-1143
120 6.5 2004.3 —234.6 308.2 19.5
7.0 763.8 —646.5 —303.2 —490.8
7.5 271.5 —633.3 —410.8 —533.8
8.0 82.7 —509.8 —361.7 —443.3
8.5 14.2 —381.9 —281.2 —336.1
9.0 —83 —278.5 —208.7 —246.2
10.0 —13.1 —147.7 —111.4 —1299
12.0 —5.2 —46.5 —34.5 —40.0
15.0 —-1.0 —11.5 —8.0 —9.4

@(o) R(ao) AESCF AEMPZ AECCSD AECCSD(T)
140 7.0 1285.6 —375.7 154 —209.4
7.5 455.6 —611.7 —358.3 —505.6
8.0 139.7 —558.7 —390.2 —487.5
8.5 25.8 —439.9 —325.1 —390.2
9.0 —11.2 —327.9 —2479 —292.1
10.0 —19.7 —174.9 —1339 —1553
160 7.0 2060.3 157.0 584.4 3232
7.5 735.4 —485.1 —209.1 —380.0
8.0 2322 —565.3 —381.8 —494.4
8.5 50.3 —480.2 —355.0 —429.9
9.0 -9.6 —369.2 —281.7 —3322
10.0 —25.6 —199.7 —1553 —179.3
180 7.0 24743 469.5 909.3 632.8
7.5 885.9 —397.8 —114.3 —295.1
8.0 282.7 —5554 —366.8 —485.8
8.1 219.2 —552.1 —=377.7 —487.3
8.5 64.5 —492.7 —363.9 —442.9
9.0 —-7.8 —384.9 —294.9 —348.0
10.0 —28.0 —210.9 —164.1 —189.3
12.0 —11.4 —63.7 —49.4 —56.4
15.0 —2.1 —14.2 —10.8 —12.3

pleteness is more difficult to estimate, but a comparison with
the estimated complete basis set limit values of interaction
energies that van Mourik and Dunning obtained for Ar—HF
suggests that it should not exceed a few percent. In addition
to the global minimum, the PES contains a long channel that
extends between two local minima: one for the angular con-
figuration at R="7.39a, and ®=159.7° (a well depth of 126
cm ') and another one for the T-shaped configuration at R
=7.16a, and ®=107.5° (a well depth of 121 cm™"). These
two minima are separated by a barrier that ab initio calcula-
tions predict to be only 0.2 em™! higher than the more shal-
low minimum. Our fitted surface gives a barrier of 1 cm™ !,
Whether such a low barrier really exists will have to be veri-
fied by more sophisticated calculations.

Our results are in good qualitative and quantitative
agreement with the results of Tao et al.,® in part because of
the fortunate cancellation of two effects. On one hand, the
magnitude of the interaction energy at the MP4 level of
theory, AEM™ | is overestimated compared to AEC®SP™. On

7.5

10.5

9.5

R [a.u.]

6.5 1
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Theta [deg]

FIG. 2. Potential energy surface of the Ar—HCN complex.
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TABLE II. Interaction energies (in wE,) at various levels of MP and CC
theory at the approximate global and local minima on the PES of the Ar—
HCN complex. All correlated supermolecule results are from frozen core
calculations, with the exception of the AEM?? values given in parentheses.
All perturbation results are from calculations in which all electrons were
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correlated.

Energy R=85,0=0° R=70,0=90° R=8.1,0=180°
AESCF 261.9 563.7 219.2
AE® -925.9 —1250.4 -771.3
AEMP? —664.0 —686.7 —552.1
(—671.4) (—694.7) (—559.3)
AEMP? —545.9 —453.4 —376.7
AEMP4 —669.2 —578.9 -521.0
AECCSP —500.6 —380.2 -371.7
AECCSPM —641.2 —545.9 —487.3
e 863.2 987.7 514.3
el —143.0 -311.0 -157.8
AESS —458.3 -112.9 -1372
o —534.1 —473.1 —-2343
€2 -55.9 9.9 -50.1
€ -1050.7 —1392.2 -927.8

O [deg]

FIG. 3. The angular dependence of the interaction energy at different levels
of theory at R=8.0ay.

the other hand, the WT+bf basis set underestimates the
strength of the interaction compared to the aug-cc-pVTZ+bf
basis. These two effects partially cancel each other and at the
MP4 level of theory with their version of the WT+Dbf basis
set Tao er al.® obtained at R=8.5a, the MP4 interaction en-
ergy of —133.8 cm™ ' (—609.6uE,) that is smaller by 7
em™! (5%) in comparison with our CCSD(T) result of
—140.7 cm™' (—641.2uE,). But our value of AEMP ob-
tained with the aug-cc-pVTZ+Dbf basis set is equal to
—146.9 cm™' (—669.2uE,) and differs from the result of
Tao et al. by approximately 10%. The depth of global
minima appears to be the biggest discrepancy between our
CCSD(T) surface and the MP4 surface of Tao er al.® Other
differences are smaller and, for example, the radial minimum
at ®=90.0° found by Tao et al. is 19.5 cm™' above the
global minimum, which can be compared with our value of
20 cm~ ! and with 15 cm ™' from the fit of the ground state
transition data.® As with the CCSD(T) PES, the fit of the
MP4 PES of Tao et al. shows two minima in the 50°-120°

region separated by a barrier of 1 cm ™ L.

B. Decomposition of the interaction energy

The angular dependence of the MP2, CCSD, and
CCSD(T) supermolecule interaction energies at R=8.0a is
given in Fig. 3, and in Table II. This distance is shorter than
the radial minimum at ®=0.0° but longer than the one at
©=90.0°. At ®=180.0° it is quite close to the radial mini-
mum. As can be seen in Fig. 3, each curve contains two
minima. The more pronounced one corresponds to the Ar
atom positioned between the H and C atoms of HCN (O
~45°), and a very shallow one (0®=~140°-150°) corre-
sponds to Ar positioned between C and N. The strength of
the interaction is overestimated at the MP2 and underesti-
mated at the CCSD level of theory, in comparison to the

CCSD(T) results. Figure 3 also includes two curves obtained
by adding the second-order dispersion energy, Efffg , to
AEMY and AESCE. Neither of these approximations can be
considered good, although the sum of AE™" and e((j?sop) com-
pares favorably with AEMP? for angles greater than 60°. The
reason for its failure for angles smaller than 60° is the ne-
glect of the induction energy, which becomes quite important
for the linear Ar—HCN geometry and its immediate vicinity,
as can be seen in Fig. 4.

Figure 4 also shows clearly that the most anisotropic are
the dispersion and exchange energies and it is mainly their
interplay that shapes the overall surface. A more refined pic-
ture can be obtained by considering the induction energy,
whose role in certain regions of the PES was already men-
tioned, and the electrostatic energy that is shown in Fig. 3 as
the sum of ego) and eg;? Because of its purely charge-
overlap character, the electrostatic energy is the least impor-
tant component of the interaction energy, but its magnitude
is far from negligible, especially for the linear Ar—HCN ge-
ometry.

A complex nature of the interaction is further illustrated
in Table II, which contains supermolecule and perturbation
energies for the approximate global minimum (R=38.5a,
©®=0°) and for two radial minima (R="7.0a,, ®=90°, and
R=38.1a,, ®=180°). Our calculations confirm the finding
of Tao et al.® that at the MP2 level of theory, the T-shaped
structure is lower in energy than the linear Ar—HCN geom-
etry. It is only at the MP3 and higher levels of theory that
their relative positions are reversed. The key to the under-
standing of this effect is the third-order correlation correction
AE®), whose partitioning, unfortunately, has not been
implemented so far. For the T-shaped geometry, because of
the short separation between Ar and the carbon atom of
HCN, the magnitude of the exchange, dispersion, and also
electrostatic energy is larger than for either of the linear ar-
rangements. This can be contrasted with the interaction of
rare gases with diatomic molecules, where at the radial
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FIG. 4. The angular dependence of contributions to AES" and AE® at
R=8.0a,.

minima the magnitude of the exchange and dispersion ener-
gies are commonly greater for the linear than for the
T-shaped geometry.*

C. Rovibrational energy levels

To make comparisons of our potential with the experi-
ment as well as with the previous ab initio work, we calcu-
lated some spectroscopic constants and rovibrational energy
levels using the collocation method. In Table III we compare
the equilibrium (D,) and ground-vibrational-state (D) dis-
sociation energies, equilibrium (R,), and vibrationally aver-
aged (R,) intermolecular distances, the values of
(P (cos(®)) and {P»(cos(®)), and the rotational constants B
in the rigid rotor approximation. In Table IV we collect cal-

TABLE III. Spectroscopic constants of Ar—HCN calculated with the present
CCSD(T) and the Tao et al.® potentials, and from the experimental work of
Drucker ez al.’ The values of the rotational B constant are for the free-rotor
approximation.

Tao et al.  Tao et al.
(Ref. 8) (Ref. 8) This work Experiment

MP4 (X)) MP4 (35" CCSD(T) (2) (Zo)
D, (ecm™Y) 135.9 134.4 140.8
R, (ay) 8.617 8.58 8.52
Dy (cm™h) 102.13 100.72 105.0
(R)(ay) 8.116 8.109 8.183
(P (cos(®)) 0.853 0.827 0.856 0.875
(P5(cos(®)) 0.578 0.572 0.635 0.607
B (MHz) 1579 1700.18 1702.78 1610

(1655.38)°

Results obtained with the potential obtained by fitting the MP4 energies of
Tao et al. (Ref. 8) to the function given by Egs. (7)-(13).

"The results obtained with the rigid body diffusion quantum Monte Carlo
method (Refs. 36, 37).
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TABLE 1V. Calculated and observed term values (cm™!) of the ground
state, and the lowest excited %, and I1; bending states of ArHCN.

Tao et al. (Ref. 8) Tao et al. (Ref. 8) This work Observed

State J MP4* MP4® CCSD(T) (Ref. 5)°
3o 1 0.1053 0.1109 0.1112 0.1073
2 0.3156 0.3326 0.3335 0.3218
3 0 5.0496 4.2470 4.2391 5.4964
1 5.1735 4.3670 4.3644 5.6225
2 5.4216 4.6080 4.6153 5.8755
119 1 5.7977 4.6718 4.8567 6.1339
2 6.0633 4.9406 5.1241 6.4046

*The results from Table V of Tao et al. (Ref. 8).

PResults obtained with the potential obtained by fitting the MP4 energies of
Tao et al. (Ref. 8) to the function given by Egs. (7)-(13).

“Experimental results as reported in Table V of Tao et al. (Ref. 8).

culated and observed term values of the ground state, and the
lowest excited 2, and TI, bending states.

Overall, our calculated values in Tables 11l and IV are in
good agreement with the experimental measurements, al-
though quantitatively the deviations are still significant. The
calculated frequencies for the J=0—1 transitions from the
ground state to the X, and I1, bending states amount to 4.2
and 4.9 cm ™' and can be compared with the experimental
values of 5.50 and 6.13 cm™'.® Our calculation gives a dif-
ferential energy I1,—3, of 0.62 cm ', with the 3, state
being lower than the II, state, which can be compared with
the experimental value of 0.57 cm ™!, The rotational constant
in the rigid-body approximation amounts to 1702.8 MHz,
and is somewhat larger than the experimental value of 1610
MHz. The agreement with experiment can be improved by
using the rigid-body quantum Monte Carlo (RBDQMC)
method, which gives B=1655.4 MHz. 3637

The new constants and frequencies based on the
CCSD(T) potential are in certain cases farther away from the
experimental values than the previous ab initio results based
on the MP4 potential reported by Tao ef al.® In particular,
our frequencies are visibly smaller than those reported in
Ref. 8. However, the discrepancy between our results and
those of Tao et al. disappeared almost completely when we
recalculated the frequencies using the potential energy func-
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FIG. 5. The ground state % rovibrational wave function.
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FIG. 6. The bending excited state 3 rovibrational wave function for
J=1.

tion given by Egs. (7)—(13) fitted to their MP4 interaction
energies. A comparison of the original results of Tao et al
and those that we obtained with the new fit of their ab initio
MP4 energies can be found in Tables III and IV. The sensi-
tivity of some quantities to the specific form of the potential
is quite high, and it would be very useful, in our opinion, to
examine the issue for a larger set of systems and different
functional forms of fitted intermolecular potentials. Because
some potentials are obtained by approximation and some
other ones by interpolation methods, it would be equally use-
ful to perform a study of the reliability of different functions.
Such studies have not yet been done, so in order to perform
meaningful comparisons it is essential to report detailed re-
sults of ab initio calculations, as has been done in the present
work as well as in the work of Tao er al..® rather than fitted
potential functions.

To shed some light on the dynamics of the system, it is
instructive to visualize the wave functions of the three vibra-
tional states. The ground-state rovibrational wave function
shows large-amplitude bending of Ar, which, as shown in
Fig. 5, samples a long channel extending toward the
T-shaped region. This is in striking contrast to the ground
state of the Ar—HF complex,*® where the Ar atom is largely
localized around the collinear Ar—H-F configuration. The
function for the %, bending state is presented in Fig. 6. This
state is only 4.2 em ! higher in energy than the ground state
and has a large amplitude for both the collinear Ar—H-C—N
configuration as well as for the T-shaped geometry, with a
nodal plane around 60°. It also involves the Ar—N-C-H
configuration. An analogous state for the Ar—H—F complex
is largely localized around two collinear geometries, Ar—
H-F and Ar—F-H. Finally, the II, rovibrational wave func-
tion is displayed in Fig. 7. This one is clearly localized
around the T-shaped geometry, yet it also the involves Ar—
H-C-N configuration.

V. SUMMARY AND CONCLUSIONS

We have calculated the potential energy surface for the
Ar—HCN complex at the CCSD(T) level of theory using the
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FIG. 7. The bending excited state II; rovibrational wave function for
J=1.

aug-cc-pVTZ+Dbf basis set. This PES has been obtained at a
higher level of theory and with a better basis set than the
MP4 surface of Tao et al.,8 and can therefore serve as a
benchmark for a rigid-monomer model. In comparison with
the earlier results,® the equilibrium interaction energy that we
have found, D,=140.8 cm™ !, is deeper by 6.4 cm !, and the
equilibrium intermolecular distance, R=8.52 A, is shorter
by 0.06 A. Spectroscopic constants that we have obtained
using the collocation method are similar to those obtained by
Tao et al.,’ partially because of the fortunate cancellation of
errors inherent in the MP4 surface. Good agreement with the
previous theoretical results means that, unfortunately, agree-
ment with experimental results is still not completely satis-
factory. This is seen for the average values of R, P (cos 0O),
P,(cos ®), the rotational constant B, and, most noticeably,
for the bending frequencies that differ from the experimental
results by 25%. A plausible explanation of these findings is
that the error committed by using the rigid-monomer poten-
tial is smaller than the effect of the intramonomer vibrations.
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CHAPTER III

Structure and dynamics of Ar-CO, Van der Waals complex

3.1 Introduction

Similarly to Ar-HCN, the Ar-CO, complex has provided another testing grounds to design
and master algorithms and techniques of modeling PES from accurate ab initio calculations.
The system is also of great interst on its own. The structure, dynamics, and properties of the
Van der Waals complexes of rare gases with the CO5 molecule are important in the field of the
atmospheric chemistry and astrophysics.

In the literature, there is a great number of studies of Ar-COy Van der Waals complex cf.
the bibliography in Szalewicz et al .3* The latter paper appeared when this work has already
been completed. Szalewicz et al. reported thorough a study of the spectroscopic properties
of this complex, in a good agreement with the Author’s results. Therefore, below the Author
takes the liberty to present only those results which have not been supereseded by the work of
Szalewicz et al. These include:

e collocation dynamics for J=0

e calculations of the second virial coefficients

It is worthwhile to stress that calculations of the quantum corrections to the second virial
coefficient for this system have not been reported before.

3.2 Methodology of ab initio calculations

The Ar-CO, complex is described in Jacobi system of coordinates which is shown in Figure
3.1. The variable R denotes the distance between the carbon atom and the argon atom, and 6
denotes the angle between the R vector and the carbon dioxide bond axis. The CO, monomer
geometry was fixed at rco = 1.1612 A 3% and kept rigid during calculations. Calculations of
the PES were performed with the augmented correlation-consistent polarized valence-triple-
zeta (aug-cc-pVTZ) basis set functions supplemented with an additional set of bond functions.
The set of bond functions 3s3p2d of Tao and Pan,®® with the exponents:sp 0.9, 0.3, 0.1;d 0.6,
0.2, was used. Radial grid was chosen to be [5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 11.0,
12.0, 14.0] ap and angular grid to be |0, 20, 40, 60, 80, 90| degrees. The position of the bond

functions varied according to
sin 0 (g) + cos 0 <w> (3.1)
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Ar

=l

0
O=C=0

Figure 3.1: Jacobi coordinates.

The varied position of the bond functions prevented their location to be too close to the O atom
for the collinear arrangement. The interaction energy was calculated using supermolecular
approach. This method derives the interaction energy as the difference between the energies of
the dimer AB and the monomers A and B

AE™ = gV — B — B (3.2)

Energies of the monomers were calculated in the dimer centered basis set for the sake of removal
of the basis set superposition error.

3.3 Fitting of ab initio points to analytical expression

The CCSD(T)/aug-cc-pVTZ+322 ab initio interaction energies calculated using Eq. 3.2
were chosen as the data for fitting procedure. The analytical expression applied in the approx-
imation procedure is the sum of a short-range term and a long-range term, dependent on (R,0)
Jacobi coordinates:

V(R,0) = Vi, (R, 0) + Vis (R, 0) (3.3)

where

3 2
1
Vin (R, 0) = E E 9i(2j) Rl —e(ORHB0)___—___ onj (cos 9) (3.4)
== Va4 +1

Nonlinear parameters in the exponent depend on the angular variable in the following way
: 1
0) = E (rgj——=Py) (cos ) (3.5)
= Vi +1

and

2
— ) 1 0
9) - ]z% 62] WPM (COS 9) (36)
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The long-range part was chosen to be a damped electrostatic-dispersion-induction term:

1

02n+62' 1 0
Vas (R,0) = > Do (B(0) R) —5 2l ————P5, (cos ) (3.7)
W00 R2 +6 /4] + 1 J

where the D, function was the damping function of Tang-Toennies>

n k

Dy(@)=1-e"Y % (3.8)

k=0
The fitting strategy was carried out in two steps:

1. Linear least-square method to determine initial o;; and 3; parameters.The logarithm of
the SCF interaction energies was fit to determine the exponent of the Vy;, formula

2. Non-linear least-square method optimized all parameters simultaneously including Van
der Waals C),; coefficients.

Table 3.1 collects optimized parameters. The largest absolute deviation from the ab initio data
for the values were below 20000 pE;, was 0.84 pEj,. The rms (root-mean-square) for the whole
set of data was 583 uE,, and the biggest errors were located in the highly repulsive region of
the PES. Units of variables of the fit are ay for R, degrees for # and mE,, for the energy.

3.3.1 Features of PES

The global minimum of the Ar-CO, CCSD(T) PES is the T-shaped minimum located at
R.—6.515 ag and #—90°, and its well depth equals to 193.41cm~!. Recently Misquita, Bukowski
and Szalewicz®* reported SAPT and CCSD(T) calculations with various basis sets. Their
CCSD(T) well depth is approximately 2 cm~'deeper than reported in this work. The saddle
point of the PES obtained in this work is located at the collinear geometry for R=8.75 aq .
The barier height between the T-shaped and the collinear arrangement is equal to 86.45 cm ™.
Figure 3.2 shows the contour plot of the PES.

3.4 Collocation dynamics for J=0.

The Author chose the collocation method to simulate the dynamics of the Ar-CO, complex
on the CCSD(T) PES. The 2-D collocation method is straightforward to program, because it
does not require integrals of the potential with the functions of the basis set in which diagonal-
ization is performed. The details of the method are described in Chapter II.

The basis set for hamiltonian diagonalization consisted of 30 Legendre polynomials for the
angular variable and 65 gaussian functions for the radial variable. The radial functions were
evenly spaced starting from R= 3.0 ag to 13.0 ao . This basis set was sufficient for conver-
gence of the eigenvalues of the hamiltonian for quantum number of total angular momentum
J = 0. Table 3.2 contains first 10 eigenvalues (there were more than 60 eigenvalues) relatively
to the value of Dy. The first excited state which corresponds to van der Waals bending vibra-
tion lies 27.2 cm‘above the ground state energy. This value is in very good agreement with

experimentally®” determined number, which is 27.818 cm™".
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Table 3.1: Optimal parameters for the Ar-CO, CCSD(T) fit.

Parameter

Value

«a; coefficients

Qg 1.46397162544828174

o7 0.391491797617520787
Qy 0.155567987018096210
B; coefficients

Bo 15.2232403266627312

Ba 5.76080669549135482

Ba 1.22247614415686789
gi; coefficients

Joo 0.264066050850794952E-01
Jo2 -0.861020166743013404E-01
Jo4 0.145185301547874311E-01
J10 0.652917566349019325E-02
J12 0.509475095154112365E-01
14 -0.207548129507051302E-01
920 -0.236174077765420294E-02
go2 -0.661253538537006583E-02
Jo4 0.437585840196362107E-02
J30 0.167270478365487348E-03
J32 0.190893693304583425E-03
J34 -0.238397882323656684E-03
C,,; coefficients

Cso -47390.2605932150254
Ceo -91885.9499599325354
Cso -15350113.0129258446

Cs2

-11343314.1745753922
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Table 3.2:
abie Eigenvalues for Ar-COs in the case of J = 0. The values are reported relatively to

Dy=157.6 cm .

Number Energy [cm™']

0.0
27.222
33.315
51.183
52.210
61.293
65.601
66.440
69.829
70.155

0 76.720

= © 00 1O Ul W N+~ O

3.5 Second virial coefficient. Classical approach with first-order quan-
tum corrections.
3.5.1 Classical formula of second virial coefficient for atom-linear molecule case.

Classical formula for the second virial coefficient for an atom-linear molecule system is well
known3® and is shown below

B (T) = Nam / / (1 e "%") Rsin6 dRas (3.9)

The subscript AB denotes a system composed of an atom A and a linear molecule B. N, is
Avogadro’s constant in [mol™'], k - Boltzmann’s constant [2£]. The dependence of the second
virial coefficient on the interaction energy in the system is included in the exponent of the
exponential function. Variables R and 6 are Jacobi coordinates, the same as described in
section 3.2. Variable T is the temperature expressed in Kelvin.

Classical formula 3.9 is valid for the temperatures for wich exchange processes are negligible.
For temperatures below 11 K or when system contains light molecules one has to switch to the
quantum description of the second virial coefficient.

3.5.2 First order radial and angular quantum corrections to second virial coeffi-
cient.

Inclusion of quantum corrections to the classical expression 3.9 is important for lower tem-
peratures. As it will be seen, these corrections are fairly small for higher temperatures and
satisfactory agreement with experiment can be riched using only formula 3.9.

First-order quantum corrections can be divided into the radial component and the angular
component .*® The radial component is described by equation 3.10 and the angular one by

3.11.
Nym h? _vie (V (R,0))
B (1) = A7 _ // <7> R?sin 0 dRd# 3.10
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_ Nam ViR h?
B (1) — / / s
aga (1) - 12(kT)? 2uR2 30,

X Z]B i +1)Vj, (R) Pj, (cos ) R*sin @ dRdf (3.11)

The reduced mass of the AB supermolecule is denoted by p and the moment of inertia of the
B molecule by Ig. Finally, the second virial coefficient is equal to sum of the classical part and
quantum corrections:

Bag (T) = BY) (1) + BYY, (1) + B\, (T) (3.12)

In the angular correction the interaction potential V' is expanded in the body fixed frame
in terms of Legendre polynomials. The corrections can be easily calculated using numerical
quadrature commonly used for evaluation of the classic second virial coefficients.

3.6 Numerical calculations and results

To calculate the second virial coefficient for the Ar-CO, complex one has to evaluate integrals
in expressions 3.9, 3.10 and 3.11. 500 point Gauss—Legendre numerical quadrature have been
chosen. The results converged within 0.0001 [¢2 Ol]

In the case of the classical part the radial range was R €[1, 500] ag . Between R = 0.0
and R = 1.0 a¢ the integral 3.9 was calculated analytically assuming that potential’s highly
repulsive wall causes vanishing of the exponential term in expression 3.9. Table 3.3 contains
results obtained from calculations described above using CCSD(T) PES. Comparison of final
second virial coefficient in this work with theoretical and experimental values reported by
Hutson et aP? is in Table 3.4.

The plot 3.3 presents some of these results in a graphical way. It can be seen that the
agreement between calculated B(T') values using CCSD(T) PES and experimental ones is ex-
cellent for tamperatures over 250 K. The rest of the results below 250 K are located within
experimental error bars except for two lowest temperature in data range.
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Table 3.3: Results of classical second virial coefficients calculations and first order quantum
corrections for the Ar-CO, Van der Waals complex. Values in f;’,%?;
TK| B® BY BV
213.0 -80.96 0.3575 0.1706
223.0 -73.40 0.3209 0.1524
242.0 -61.22 0.2662 0.1255
262.0 -50.80 0.2234 0.1046
276.0 -44.62 0.1998 0.09307
288.2 -39.84 0.1825 0.08466
296.0 -37.04 0.1727 0.07991
303.2 -34.61 0.1644 0.07591
313.2 -31.47 0.1539 0.07087
323.1 -28.58 0.1446 0.06512
333.2 -25.86 0.1361 0.06232
365.0 -18.46 0.1141 0.05184
Table 3.4:

Comparison of calculated in this work second virial coefficients values with previously

. . . 3 .
reported theoretical and experimental values by Hutson. Values in 7. Numbers in
parenthesis denote experimental error bars.

T[K] B BSpl.Rep. Berp

213.0 -80.43 -88.30 -93.30(10)
223.0 -72.92 -80.20 -84.50(10)
242.0 -60.83 -67.30 -67.20(10)
262.0 -50.47 -56.30 -53.80(10)
276.0 -44.33  -49.70  -48.70(7)
288.2 -39.57 -44.70  -40.33(7)
206.0 -36.79 -41.70  -37.05(7)
303.2 -34.37 -30.10  -34.21(7)
3132 -31.24 -35.80  -31.20(7)
323.1 -28.38 -32.80  -28.30(7)
333.2 -25.66 -29.90  -25.80(7)
365.0 -18.29 -22.00  -19.60(7)
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Figure 3.3:

Plot of the calculated second virial coefficient for Ar-CO, versus temperature. The

HSR abbreviation denotes Hutson Single Repulsion model and HSPR, -Hutson Split

Repulsion Model.



CHAPTER IV

Structure and spectroscopy of Rg-S(*P) Van der Waals
complexes

4.1 Preface

From the most general perspective, rare gas-atom interactions are the simplest models of
the open-shell Van der Waals complexes. Very accurate ab initio calculations and reliable mod-
eling are possible for these interactions, and the resulting potentials may be used to simulate
experimentaly determined properties, first of all collision properties. For this reason the Author
has undertaken the study of the Rg-S(*P) interactions, in collaboration with the renowned ex-
perimental group of professor Aquilanti from Perugia. As a result, excellent ab initio potentials
have been modeled that accurately reproduced a variety of collision properties of these systems.
The ab initio potentials appear to be competitive to the exeperimentaly determined ones.

4.2 Introduction

The studies of weak interatomic interactions are important for understanding transport,
collision, and relaxation phenomena in the gas phase, modeling the structure and dynamics of
clusters and condensed phases, and gaining a greater insight into the nature of van der Waals
bonding. The analysis of open-shell interactions is of especially interest because it allows one
to investigate the interaction anisotropy arising from a non-spherical electron density distribu-
tion in the open-shell systems. The anisotropy of interaction manifests itself in the splitting
of degenerate electronic states of the open-shell atom upon the interaction with an external
particle. The difference in the corresponding interaction potentials can often be attributed to
contribution from the incipient bonding, the embryo of the covalent chemical bonding. The role
of fine structure effects like the spin-orbit coupling is important for the processes of collisional
energy redistribution in plasmas, discharges, laser media, etc.. It is not surprising therefore that
many researchers focused their recent attention on an accurate description of van der Waals
interactions with account of relativistic effects.

At present, there are three basic routes to accurate modeling of weak interaction potentials
(here "weak" means a few hundreds of wavenumbers or less). First of all, the interaction
potentials for some weakly bound atom-atom systems can be generated from analysis of atomic
scattering in molecular beams.

It is well understood that the scattering data uniquely determine the interaction potential
0 although this may not be generally true for open-shell atoms where the collision dynamics

28
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is governed by several coupled potentials. The interactions in such systems can, however, be
studied with the help of some more sophisticated techniques like magnetic field selection.

Spectroscopic measurements is an alternative approach to experimental determination of
interaction potentials in weakly bound systems. The experimental measurements, however,
meet with certain difficulties when applied for studies of the lowest electronic states in the
complexes. The weak binding energy makes it difficult to generate the species in concentra-
tions high enough to obtain well-resolved excitation spectra. Measurements of bound-free laser
induced fluorescence are more instructive for studying the low-lying states (see, e.g., Refs.4713).

However, selection rules do not usually allow the experiments to probe all the states corre-
lating with the first dissociation limit, and the anisotropy of interaction can not be investigated
in full details. One solution is to use the photoelectron spectroscopy of weakly-bound anions, es-
pecially high-resolution zero electron kinetic energy (ZEKE) spectroscopy, (see, e.g.,Refs.#6).
Due to the higher binding energy of anions and less strict selection rules, this approach is very
promising. It is, however, yet to be widely explored.

Finally, the interaction potentials of van der Waals complexes can be computed from first
principles using the ab initio electronic structure theory. Although the calculations for weakly-
bound open-shell systems are still considered as the state-of-the-art level of theory ,!” many
authors proved them to be successful for a number of systems.

The only reliable interaction potentials for the Rg-S(®P) systems are the scattering potentials
obtained recently from molecular beam experiments .*” Several recent ab initio calculation for
the heavy Kr-S *® and Xe-S% systems have been mainly designed to treat the states correlating
with excited atomic limits and do not provide an accurate description of low-lying electronic
states. The purposes of the present paper are

(i) to evaluate accurate ab initio potentials for Rg-S systems (Rg=He-Xe) and test the ac-
curacy of the atomic model for spin-orbit (SO) coupling;

(ii) compare the ab initio and scattering potentials and test the correlation rules for Rg-S
systems;

(iii) investigate the dynamics of intramultiplet mixing in Rg + S(*P;) inelastic collisions and
make a qualitative comparison to the results obtained previously for the Rg + O(*P;)
collisions.

4.3 Ab initio interaction potentials

4.3.1 Non-relativistic potentials

In the non-relativistic approximation, the interaction of an S(*P) atom with Rg gives rise
to two states of *II and *¥~ symmetry. Their electronic configurations are pip,p. and pyp,p?,
respectively. In the latter case the Rg atom is bound to the S atom by purely van der Waals
interaction with doubly occupied p, orbital. In the I configuration the Rg atom interacts
primarily with the singly occupied orbital and the incipient chemical bonding contributes to
the binding energy.

The supermolecular approach is used to calculate interaction energies of the He, Ne, Ar, Kr

and Xe with the sulfur atom. The interaction energy is expressed as

AE(R) = Bap (R) - ER°PS (R) — ER°P (R) (4.1)
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where quantity E'5 is the energy of the dimer AB, and EZDCBS and EEDCBS are energies of
monomers A and B, respectively, calculated with dimer centered basis set (DCBS). Interaction
energies were corrected for basis set superposition error (BSSE) by using counterpoise procedure
of Boys and Bernardi.*

Calculations of the non-relativistic potentials are performed with augmented correlation
consistent quadruple zeta basis set denoted as aug-cc-pVQZ (hereafter, VQZ) augmented by
the [3s3p2d] set of bond functions. The bond functions are centered at the midpoint between
the sulfur atom and the rare gas atom and have the exponents sp: 0.9, 0.3, 0.1; d: 0.6, 0.2.
The resulting basis set is denoted by VQZ-+332. In the case of the Xe-S system, the relativistic
effective core potential ECP46MWRB is used for the Xe atom and the VQZ basis set for the S
atom with the same 332 bond functions are employed.

The post-Hartree-Fock interaction energies are obtained at the unrestricted coupled cluster
UCCSD(T) level of theory, based on the single reference RHF wave function, as described in
Ref 51,52

The resulting set of ab initio potentials is designated below by
UCCSD(T)/VQZ+332 (UCCSD(T)/VQZ/ECP+332 for Xe-S). Only the valence shell is corre-
lated. The internuclear distance R was varied in the range [1.25 A, 12.0 A| for He-S, [1.5 A, 12.0
A] for Ne-S, [1.75 A, 12 A] for Ar-S, [2.0 A, 12.0 A] for Kr-S, and [2.0A, 15.0 A] for Xe-S. The
spin contamination (S? — S? —S,) = 0.002 is small for all complexes under consideration. It
does not change with the distance and is the same as for the separated S monomer. Tables 4.1,
4.2, 4.3, 4.4, 4.5 collect UCCSD(T)/VQZ+332 interaction energies for the He-S, Ne-S, Ar-S,
Kr-S and Xe-S system, respectively.

For the Ne-S system, the most accurate scattering data are available .*” Therefore, we
perform a more extensive ab initio analysis for this system. First, we use an extended aug-cc-
pV5Z basis supplemented with a larger [3s3p2d2flg| set of bond functions with the exponents
(sp: 0.9, 0.3, 0.1; d: 0.6, 0.2; f: 0.3). This basis set is denoted by V5Z-+33221. Second, another
version of the coupled cluster method which includes triples at the fourth order, UCCSD|T]|
354 with the same V57433221 basis set is applied. Finally, the calculations which correlate
all shells of Ne and S except for only the innermost 1s orbitals are performed. This calculations
are referred to as UCCSD|T]/fc(1s)/V5Z+33221.

All of the electronic structure calculations were performed with MOLPRO 2000 suite of
programs.®3

7

4.3.2 Comparison of scattering and ab initio potentials

The scattering and ab initio potentials are shown in Figure 4.1 , and the zero points and
equilibrium parameters of the potentials are collected in Table 4.6.

In general, the ab initio data for Rg=Ne-Xe fall within the error bars of the scattering
experiments .** Comparison of our ab initio results with the parameters of the scattering
potentials reveals the following trends. For all Rg atoms except Ar, the agreement is markedly
better for the excited *<~ state than for the ground ®II one. The ab initio calculations predict
shorter equilibrium distances and smaller interaction energies in the ground states, although
the theoretical value of D, for Xe is overestimated by ca. 20 cm~*. The ab initio calculations
of the excited states also result in slightly shorter R, but lead to the D, values in an excellent
agreement with experimental data. The ArS system is an exception. The computed binding
energy of ArS slightly overestimates the result of the measurements.
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Table 4.1: UCCSD(T) interaction energies for He-S pEh
R [A] STI 3%
1.25  228287.73173 405826.40699
1.50  108528.34263 205195.08385
1.75 49467.55102  97590.16230
2.00 21446.17721  44643.57845
2.25 8791.74654  19836.20829

2.50 3352.53865 8563.17892
2.75 1134.19751 3562.38825
3.00 287.24466 1398.31956
3.25 -3.88463 491.36093
3.50 -83.08998 129.33648
3.75 -88.83492 -3.14905
4.00 -73.74386 -42.95151
4.25 -56.12838 -47.91688
4.50 -41.32519 -41.60347
5.00 -22.02390 -25.25055
5.50 -12.09241 -14.30979
6.00 -6.96486 -8.21750
6.50 -4.20348 -4.88989
7.00 -2.64210 -3.02751
8.00 -1.15333 -1.28593
9.00 -.05848 -.61522
10.00 -.29354 -.32214
12.00 -.09889 -.11530
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Table 4.2: UCCSD(T) interaction energies for Ne-S pEh
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R [A] 311 3y
1.50  251737.68239 375413.15293
1.75  113680.82509 185830.48054
2.00 48216.19186  84630.17802
2.25 19339.17124  36762.81145
2.50 7221.14854  15352.96948
2.75 2381.66656  6101.73700
3.00 570.70732  2229.56438
3.25 -35.62268 676.27485
3.50 -191.70566 95.26977
3.75 -195.88513 -93.04295
4.00 -159.42628 -132.08416
4.25 -119.90217 -120.66058
4.50 -87.55584 -96.72794
5.00 -46.24039 -54.73074
5.50 -25.28147 -29.98380
6.00 -14.50358 -16.81312
6.50 -8.70769 -9.82645
7.00 -5.44984 -6.02456
8.00 -2.37298 -2.58005
9.00 -1.13802 -1.23911
10.00 -0.59376 -0.64659
12.00 -0.19952 -0.21654




Table 4.3: UCCSD(T) interaction energies for Ar-S uEh
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R [A]

I

Y

1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25
4.50
5.00
9.50
6.00
6.50
7.00
8.00
9.00
10.00
12.00

249942.48836
116052.49874
51713.46460
21766.30614
8306.47841
2557.82661
303.63754
-443.90630
-591.22024
-530.73913
-420.24105
-315.78021
-170.08980
-92.62758
-52.58782
-31.27481
-19.42832
-8.35697
-4.01739
-2.09693
-0.68853

409454.71997
213774.99206
104955.20851
48986.76144
21692.09036
8945.10685
3255.76842
862.59720
-51.77176
-335.68911
-371.19162
-322.74644
-195.92633
-110.26190
-62.61141
-36.79967
-22.51558
-9.41194
-4.43117
-2.28469
-0.74036
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Table 4.4: UCCSD(T) interaction energies for Kr-S uEh
R [A] 311 )
2.00 153612.80302 279354.62719
2.25 69407.49511 143787.45565

2.50 30072.99977  70455.06133
2.75 12062.30598  32811.69966
3.00 4078.61644  14343.41491
3.25 760.76663 5676.69249
3.50 -448.51754 1820.22099
3.75 -760.35340 232.87005
4.00 -730.42200 -332.72301
4.25 -098.77116 -467.19777
4.30 -969.95027 -469.34307
4.50 -459.26547 -438.58120
5.00 -252.15137 -282.41133
5.50 -137.89109 -162.03985
6.00 -78.13873 -92.48071
6.50 -46.28861 -54.32639
7.00 -28.61489 -33.16154
8.00 -12.19610 -13.80295
9.00 -5.82708 -6.47791
10.00 -3.03399 -3.33097
12.00 -0.98860 -1.07104
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Table 4.5: UCCSD(T) interaction energies for Xe-S pEh
R [A] 311 )
2.00  209893.13141 361606.31440
2.25 94983.36749 198139.01786
2.50 41443.04437 104003.26104
2.75 17041.71095  52014.21816
3.00 6137.41977  24611.04456
3.25 1437.02052  10812.81890

3.50 -414.15349 4192.45619
3.75 -986.05463 1200.26077
4.00 -1025.15523 -34.38665
4.25 -877.49042 -460.08147
4.30 -840.74688 -494.22940
4.50 -692.15433 -539.21929
5.00 -391.35552 -398.94068
5.50 -215.19020 -238.83002
6.00 -120.75091 -137.66384
6.50 -70.42009 -80.58816
7.00 -42.92932 -48.83022
8.00 -17.98470 -20.09112
9.00 -8.51424 -9.37881
10.00 -4.40723 -4.81135
12.00 -1.43173 -1.55534

15.00 -0.37275 -0.40076
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Figure 4.1: Scattering and ab initio potentials.
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Table 4.6:

37

The zeroes o (V (o) = 0), A, equilibrium distances R,, A, and well depths D,, cm™"
for the scattering and ab initio potentials of the 3II and 3X~ states of the Rg-S

systems
System Parameters Scattering UCCSD(T)/VQZ+332
311 3%~ 311 3%~
HeS o - - 3.244 3.739
R, - - 3.653 4.188
D, - - 19.94 10.60
NeS o 3.23 £0.13 3.55£0.14 3.223 3.589
3.212¢ 3.580¢
3.206° 3.575°
3.206¢ 3.575¢
R, 3.62 +£0.14 397 £0.16 3.625 4.024
3.614¢ 4.013¢
3.608° 4.008°
3.604° 4.003¢
D, 53.2 £ 13 2907 44.60 29.03
46.17¢ 29.48¢
47.03" 29.97°
47.55°¢ 30.24°¢
ArS o 3.38 £ 0.10 3.81 =£0.11 3.319 3.726
R, 3.79 £0.11 424+ 0.13 3.755 4.186
D, 1484 £22 726 £ 11 129.76 82.15
KrS o 3.48 £0.10 3.87 £0.12 3.373 3.822
R, 391 £0.12 432+ 0.13 3.826 4.295
D, 192.0 £ 29 103.2 £ 15 169.49 103.01
XeS o 3.58 £ 0.11 4.00 £ 0.12 3.418 3.988
R, 4.02 £ 0.12 4.45 £ 0.13 3.897 4.482
D, 209.7 £ 31 1153 £ 17 229.45 118.43

@ UCCSD(T)/V5Z+33221

calculations

UCCSD|T]/fc(1s)/V5Z+33221 calculations

b UCCSDI|T|/V5Z+33221

calculations

C
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Calculations with bigger basis sets for Ne-S indicate that the

UCCSD(T)/VQZ+332 calculations are not fully converged with respect to the both basis set
size and the level of correlation treatment (although the convergence error is only on the order
of 5%). Interestingly, all factors (the use of extended basis set, the implementation of the
UCCSD|T| method, and the account for the correlation of inner shells) increase the binding
energy in the 3II state improving the agreement with the scattering data. The same holds true
for the 3¥~ state, but the net effect is much less significant. At the same time, the improvements
of the ab initio calculations systematically shorten the equilibrium distances in both electronic
state, increasing the deviation from the experimental results. The effect of the basis set size is
most significant.

It is also instructive to compare qualitative trends in potential parameters in the sequence of
Rg atoms. According to our ab initio calculations, He-S is a distinguished system with relatively
long equilibrium distances in both electronic states. Indeed, passing to Ne, significantly reduces
R, which then monotonically increases when Rg changes from Ne to Xe. The same trend is
represented by the scattering potentials.

The degree of interaction anisotropy can be qualitatively characterized by the decrease of
the equilibrium distance dR, = |R.(*II) — R.(?37)|
/R.(*II) and increase of the binding energy dD, = |D.(*1I) — D.(*<7)|/D,
(*II) upon the excitation from the 3X~ to 3II state. If we consider the latter state as having
purely van der Waals bonding, these differences reflect the contribution of the incipient chemical
bond formed by an unfilled p, orbital. For the scattering potentials, neither § R, nor 6 D, exhibit
definite trend when Rg changes from He to Xe, varying in the ranges 45-51% and 10-12%,
respectively. In contrast, the ab initio results show a clear and consistent propensity in the
Ne-Xe sequence with He-S being again a distinguished system. The relative anisotropy steadily
increases from Ne to Xe undergoing the largest change for Xe.

The behavior of the short- and long-range potential branches is also worth to discuss. Ac-
cording to Figure 4.1, repulsive walls of the ab initio potentials are generally slightly softer,
especially in the ground state. The leading Cjy coefficients of the long-range 1/R" expansion
are presented in Table 4.7. For both electronic states, the coefficients of scattering potentials
systematically exceed the ab initio values. As far as only 1/R® term is retained in the scatter-
ing potentials, it is likely that Cg coefficient effectively accumulates all the attraction, which is
distributed among high-order expansion coefficients in the ab initio potentials. The interaction
anisotropy, i.e., the ratio of Cy coefficients for 3II and ¥~ states is also different. Evalua-
tion of scattering potentials was relied on the fixed ratio Csn/Csx = 1.185 4T as estimated
from the ratio of static polarizabilities of sulfur atom .> Ab initio interaction is much less
anisotropic. The Cj ratio increases from Ne to Xe reaching the maximum value of 1.102 (He-S
interaction is again an exception being more anisotropic than Ne-S and Ar-S ones). Although
the UCCSD(T)/VQZ+332 calculations tend to overestimate the Cj anisotropy as is evident
from refined calculations on Ne-S, the disagreement with scattering data is still too big. One
can take into account two possible reasons. First, the overall anisotropy of the long-range ab
initio potentials is higher due to the difference of the high-order dispersion-interaction terms.
Second, the relation of Cy coefficient with the static polarizabilities used in the construction of
scattering potentials is an approximate one.



J. Ktos: "Van der Waals complexes..."

Table 4.7:

39

The C§ coefficients of the asymptotic long-range expansions of the Rg-S interactions

in the 3II and 3%~ states, eV AS

System Potential Cs.nn Csyx Con/Csx
HeS UCCSD(T)/VQZ+332 7.08 7.72 1.090
NeS scattering 17.90  21.20 1.185
UCCSD(T)/VQZ+332 15.19  15.46 1.018
UCCSD(T)/V5Z+33221 15.27  15.99 1.047
UCCSD|T]/V5Z+33221 15.55  16.20 1.042
UCCSD|T]/fe(1s)/V5Z+33221  15.75  16.48 1.046
ArS scattering 63.11  74.77 1.185
UCCSD(T)/VQZ+332 51.76  53.45 1.033
KrS scattering 87.61 103.79 1.185
UCCSD(T)/VQZ+332 76.33  80.30 1.052
XeS scattering 131.88 156.24 1.185
UCCSD(T)/VQZ-+332 118.54 107.57 1.102

4.3.3 Analytical fits
The UCCSD(T)/aug-cc-pVQZ+332 (ECP46MWB(Xe)+

aug-cc-pVQZ(S)+332 in case of Xe-S system) results for Rg-S interaction for *% and *II states
were approximated by analytic expression of Degli Esposti-Werner type®® composed from the

short-range term (Vy;), and the asymptotic long-range part (Vs):
V(R) =V (R) + Vs (R)

where

8
‘/;h (R) — Z glRle—a(R—ﬁ)
=0

The long-range part were chosen to be a damped dispersion term:

4

1 Con
Vas (R) = =5 [1 + tanh (y + 0R)] > R;;g

n=0

(4.4)

The nonlinear «, 5, v, ¢ and the linear g; and C; parameters were optimized using the
Levenberg-Marquardt least square method. The RMS values for each curve of the *% and ®II

of Rg-S systems are collected in Table. 4.8.

The maximum of absolute error was equal to 0.2 pEh for Xe-S system in the vicinity of the

sign change.

4.4 Total scattering cross sections
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Table 4.8: The RMS of fits. Unit in yEh
Rg-S °% I
He-S 0.0033 0.0011
Ne-S  0.025 0.016
Ar-S  0.020 0.0115
Kr-S 0.0084 0.008
Xe-S  0.046  0.105

4.4.1 Computational details

To calculate absolute total scattering cross sections (ATCS) we use the same model as was
implemented for the analysis of molecular beam measurements in Ref.*” The SO coupling is
approximated by its atomic contribution

I:ISO = aﬁg, (45)

where L and S are the orbital and spin electronic angular momenta of the open-shell atom and
the SO constant « is related to the energies of j = 1 and j = 0 atomic sublevels with respect to
J =2one A;=396.2 cm~" and Ay=573.4 cm™! .°7 Tt should be noted that if Eq.(4.5) is strictly
valid, A;/A, should be 2/3. The experimental values of the SO splittings are used in the
calculations. Using the minimum atomic basis set to describe the wave functions of the Rg-S
electronic states correlating to Rg + S(®P) asymptotic limits ,°® one can easily evaluate the
matrix of the relativistic Hamiltonian, see, e.g., .? % Neglecting the Coriolis and radial diabatic
couplings, one can resort to adiabatic approximations which allows us to consider scattering
on six uncoupled relativistic potentials. The individual ATCS for each potential are calculated
using the effective quasiclassical ®® and exact quantum approaches as functions on the center-of-
mass (c.m.) velocity. Both methods led to essentially the same results. After the summation of
individual cross sections with weights corresponding to the experimental conditions ,*” the total
ATCS is transformed to the laboratory frame to account for the spreading of the laboratory
velocity of the beam and thermal motion of the projectile.

Before discussing the results of these calculations, it is worth to address the validity of the
electronic structure model. For Rg+O(®P) collisions, we have found that the interaction with
the electronic states correlating with excited electronic states of oxygen atom does not influence
the scattering dynamics significantly ,% although small contribution from the S('D) atom itself
could not be excluded .*" Tt is interesting to check here the quality of the atomic approximation
to the SO coupling (4.5).

For this purpose, the direct calculation of the SO coupling matrix elements between the
311 and 3X~ states of the Ne-S and Xe-S are performed using the method of diagonalization
of the H,; + Hso operator 97 implemented in the MOLRPO2000 suite of programs . The Ne
and S atoms are described using the uncontracted VQZ basis set, while for the Xe atom we
adopt the pseudopotential Stuttgart ECP46MWB(spdf) basis set. The complete Breit-Pauli
SO Hamiltonian (fISO) is expressed in the basis of adiabatic states of the -Hel Hamiltonian. In
the case of Ne-S, only two states correlating with the P state of the sulfur atom are included
in the diagonalization procedure. For the Xe-S system, this basis set is also augmented by the
states originating from the 'S and 'D states of the sulfur atom.
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Asymptotic values of the SO coupling matrix element are equal to 193.1 and 194.5 cm™!
for the minimum and extended bases of the adiabatic states. The corresponding splittings are
A1=386.2, Ag=579.3 cm ! and A;=389.0, Ag=583.5 cm !, respectively. The latter values are
closer to experimental data (with an absolute error within 10%). The calculated SO matrix
elements are plotted in Figure 4.2.

The matrix elements are almost independent of the interatomic separation down to rel-
atively short internuclear distances and then show a rapid decrease. For Ne-S, this fall-off
happens at a rather small distance, which is well outside the region of importance for collision
dynamics. However, for Xe-S the deviation from the atomic model starts quite close to the zero
of the 3II potential. The test calculations performed with the ab initio R-dependent couplings
demonstrate that this does not affect significantly the total scattering cross sections discussed
below. It should be noted, however, that the effect on the high-energy collisions can be more
important.
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Figure 4.2: R-dependent SO matrix elements for the Ne-S and the Xe-S systems.



CHAPTER V

Ab initio calculations of adiabatic and diabatic potential
energy surfaces of CI(°P)- - -HCI('$") Van der Waals
complex

[J. Chem. Phys. 115, 3085 (2001)]

5.1 Preface

This Chapter describes supermolecular ab initio calculations of the Cl+HCI Van der Waals
complexes. It developes several new ideas necessary to apply a CCSD(T) potential for first 3
states arising from the interaction of HCl with the ground state (*P) chlorine atom. In par-
ticular, the issue of basis set superposition error related to rotation of singly-occupied orbitals
in three ghost monomer states has been addressed and solved. Another novelty is related to
consequent use of the CCSD(T) method to calculate interaction energies of all three states, de-
spite two have the same symmetry. The adiabatic and diabatic PESs for this system represent
the first state-of-the-art characterization of the complex in the literature. Previous semiempiri-
cal® and recent ab initio (Jungvirth) potential are of considerable lower quality. It is expected
that the paper will prompt experimental determination of the spectra of CI-HCI - still a highly
nontrivial task.% "

5.2 Introduction

The reactions between halogen atoms and hydrogen halide molecules are important pro-
totypes in the study of chemical reaction dynamics. They can be studied in greater detail
experimentally, and have also been used as testing ground for theories of reactive scattering.
In particular, for almost two decades, there has been a great deal of interest in the hydrogen
exchange reaction C1(?P)+HCl—CIH+CI(?P) .7t

The transition state of this reaction has been probed by photodetachement spectroscopy of
the negative ion CIHCI=,"® %0 and this triggered further theoretical work .817%

It is now widely recognized that long-range intermolecular forces influence the rate and
outcome of chemical reactions by trapping and/or orienting the reactants as they approach
one another 156991793 Perhaps the most spectacular case is provided by the Cl1-+HD reaction,
where, as shown by Scouteris et al.,® the entrance valley plays a decisive role in the strong
preference for the production of DCI.

43
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However, little is known about long-range forces between reactive species. Most theoretical
studies of chemical reactions have used interaction potentials specifically designed to reproduce
the transition state region, paying relatively little attention to the Van der Waals region in the
entrance channel, and to the possibility of formation of weakly bound pre-reactive complexes.
The series of pioneering studies of halogen atoms and hydrogen halide molecules by Hutson and
coll.689495 represent first attempts to address this problem at the semiempirical level. They
also underscore a great need for the state-of-the-art ab initio potential energy surfaces for the
CI-HCI system to examine quality of the semiempirical model.

Probing the Cl+HCI complex experimentally has barely started. In 1995 Zhao et al. re-
ported state-resolved rotational energy transfer in open shell collisions CI(*P3/5)+HCL™ More
recently, in 1999, spectroscopical probe of the pre-reactive complex CI-HCI by bond-specific
photodissociation of (HCI), has been studied by Liu et al.%®

From the ab initio point of view the Cl+HCI reaction represents a serious challenge. If one
neglects the spin-orbit (SO) coupling, the electronic P ground state of the Cl atom is triply
degenerate. Interaction with the HCl molecule removes this degeneracy, and, in general, three
orthogonal states arise. Two of them are of the same 2A’ reflection symmetry, and correspond
to two orthogonal assignments of the five CI 3p electrons: pip,p? and pip’p., with p, and p,
orbitals lying in the CI-H-Cl plane. The remaining orthogonal state is of the 2A” reflection
symmetry, and corresponds to the pmpzpz assignment of the Cl free atom with p, othogonal to
the triatomic plane. For the collinear configuration of the atoms there are a non-degenerate
2y * state and a doubly degenerate ?II state. The latter is related to the singly occupied orbital
of the Cl monomer perpendicular to the HCI bond axis. On bending the Cl-HCI complex, the
2+ state correlates with one of A’ symmetry, whilst the 2IT state splits into one state of the
A’ symmetry and another of the A” symmetry.

At long range, the ?II potential energy surface (PES) of the collinear CI-HCI complex lies
lower in energy than the 22+ PES. This is because the singly occupied p orbital of the 2II state is
perpendicular to the CIHCI molecular axis, so that the p orbital pointing towards the positively
polarised H in HCI is doubly occupied, giving rise to a more favourable concerted dipole-
quadrupole and quadrupole-quadrupole interactions, than does the converse (231) arrangement
of the singly and doubly occupied orbitals.®® However, in the transition state region for the
reaction, the 227 PES lies lower in energy than the 2ITI PES. This is because there is stronger
exchange repulsion between the doubly occupied p orbital lying along the molecular axis (*IT)
and HCI, than is the case when the singly occupied p orbital lies along the molecular axis
(*L1). As a result, there is a crossing of the 22 and 2IT PESs at some intermediate collinear
geometry. For non-collinear geometries, this real crossing becomes avoided, producing a conical
intersection between the 1A" and 2A’ (hereafter we omit the superscript of multiplicity). This
situtation is very similar to the Hy, + F and Hy + Cl reactive systems.’®°" It is worthwhile to
note, that other crossings are expected at another collinear, nonreactive approach Cl. - -CI-H.
To the best of our knowledge, they have not been investigated so far.

Many electronic-structure investigations have been made of the Cl-+H
Cl system. However, most of ab initio studies of the potential surfaces have considered only
the ground adiabatic PES, and have concentrated primarily upon the transition-state region,
with much less attention devoted to the Van der Waals region. The lowest adiabatic PES has
been studied by Gonzales et al.®® at the spin-projected second order Mgller-Plesset (MP2)
level of theory. Maierle et al.”’ evaluated all three states at the admittedly very modest multi-
configurational self-consisted field (MCSCF) level of theory, as evidenced by their two-fold
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underestimation of the barrier. The most advanced and refined calculations to date of all three
PES by the restricted coupled cluster singles, doubles and non-iterative triples (RCCSD(T))
and multireference configuration interaction (MRCI) treatments are those of Dobbyn et al.’”
However, even these authors composed the global potential by combining the fitted ab initio
surface with empirical long range and short range potentials of Ref.%

Indeed, the only information on the Van der Waals region so far comes from Dubernet and
Hutson.®® They combined the multipole-expanded electrostatic potentials with the semiem-
pirical Ar-CI(®P) and Ar-HCI potentials, from which they extracted only the appropriate co-
efficients.® This simple but ingenious approach provided the three semiempirical adiabatic
states which indicated the presence of a well region sufficient to support bound states. They
also estimated the spectral range where the stretching and bending frequencies should occur.
Unfortunately, no experimental spectra of this complex have yet been detected. The empirical
surfaces of Dubernet and Hutson have been widely used in reactions not involving chlorine,?* %
but the ab initio verification has never been done.

The aim of our work is to calculate PESs of the Cl+HCI reaction in the Van der Waals
region, by using the state of the art ab initio technology. By contrast with the previous work,
we attempt to evaluate the three PES only in the region of weak interaction, to achieve the
highest accuracy possible, while skipping the region of strong interaction and of transistion
state. Such a focal approach enables us to summon all our expertise regarding the ab initio
calculations of intermolecular forces, in particular about basis set requirements, removal of a
basis set superposition error (BSSE), level of correlation treatment, and size consistency.'®!7
We use the supermolecular approach within the (RCCSD(T)) formalism, and very efficient
augmented correlation consistent polarized basis sets supplemented with bond functions to
ensure saturation of basis set and highest level of electron correlation treatment. We generate
the adiabatic PESs by using the RCCSD(T) method. Since the RCCSD(T) is bound to fail in
the regions of curve crossings, we carry out parallel calculations at the MRCI level of theory.
In particular, we evaluate non-adiabatic couplings between adiabatic states at the MRCI level,
and then we use the results to transform adiabatic PESs to the diabatic basis.

5.3 Computational methods

5.3.1 Geometries and basis sets

The CI-HCI complex is described in Jacobi coordinates (R, ). The R variable denotes the
distance between the center of mass of the HCl monomer and the Cl atom, and € denotes the
angle between the R vector and the HCI bond axis. 6 = 0° corresponds to the CI. - -H-Cl
collinear sequence. The HCI monomer was kept rigid during calculations and its interatomic
separation was set at r = 1.275 A. This value is slightly different from the bond length given
by Huber and Herzberg® which is 1.27455 A. The axis of the system of coordinates are shown
on Figure refcl2h-figlab. The origin of the system is placed at the center of mass of the HCI
molecule. The bond axis of the HCI molecule was set along the y axis of the coordinate system
and the x axis as perpendicular to the triatomic plane.

Calculations of the potential energy surfaces were performed with the augmented correlation-
consistent polarized valence-triple-zeta (aug-cc-pvTZ) basis function set of Dunning et al. %9101
supplemented with an additional set of bond functions. The set of bond functions [3s3p2d] of
Tao and Pan ,3% with the exponents:sp 0.9, 0.3, 0.1;d 0.6, 0.2, was used. Bond functions were
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centered in the middle of the distance of the Cl atom from the center of mass of the HCI
molecule. The basis set is denoted as aug-cc-pvTZ-+(332). It was shown to be both effective
and economical for a number of Van der Waals complexes which included rare gas atoms.?3 24102

5.3.2 Ab wnitio adiabatic potential energy surfaces

All calculations reported in this paper were performed using MOLPRO package.”® The
supermolecular method was used in calculations of three adiabatic potential energy surfaces.
This method derives the interaction energy as the difference between the energies of the dimer
AB and the monomers A and B

AE™ = BV — EW — B (5.1)

The superscript (n) denotes the level of ab initio theory. In this paper the RCCSD(T) method
51,52 i5 used, because of its ability to recover practically all correlation contributions for the Van
der Waals interaction. Lege artis, previous studies employed RCCSD(T) only for the lowest
states of each symmetry, 1A" and 1A”. The single reference coupled cluster techniques are
not able to calculate globally valid 2A” PES, the second state of the A’ symmetry, nor give
any information about the nonadiabatic couplings between the 1A’ and 2A’ states. However,
locally in the Van der Waals region, where the A’ states are mostly well separated, the excited
2A’ state can be adequately represented by a single Slater determinant. Indeed, according to
Szalay and Gauss, an excited state described by a single-electron promotion to a singly occupied
open-shell (from one p orbital to another, orthogonal p orbital) should be amenable to single-
reference teatment.!®> To make sure that one-determinantal reference is valid, we performed
the diagnostic of the T quantity.'%%1% T, is related to the norm of singles amplitude vector.
The T, value seldom exceeded the threshold of 0.02 which confirmed that for almost whole Van
der Waals region one-determinantal reference worked.

If the ab initio theory is size-consistent, such as the RCCSD(T)®! method is, to avoid BSSE
it is enough that all of the components in Eq. 5.1 are calculated in the whole basis set of the
dimer. This is equivalent to the counterpoise (CP) correction method of Boys and Bernardi
50,106,107 The CP procedure is straightforward as long as one considers single non-degenerate
electronic states for the dimer and for the monomers. However, in the case of degenerate open-
shell monomers the procedure becomes more involved. This is because the degeneracy of the
monomer energies is removed by the effect of partner’s orbitals, and each dimer state is related
to a different CP monomer state. If the dimer and CP monomer states are of different electronic
symmetry, as it is, for example, for He(*S)+NO(X?I)?* or Ar(*S)+OH(X?IT)?® systems, one
can still easily match, by using symmetry, the proper monomer energy with the dimer energy.
If not, the situation is more complex, as will be described below.

Some calculations of the state energies and the calculations of the 1A’- 2A’ mixing angle
were performed at the MRCI level of theory. These calculations began with the determination
of the state-averged CASSCF orbitals which assumed the Cl-moiety-related orbitals as follows:
the 1s orbital frozen, the 2s and 2p orbitals doubly occupied, and the 3s and 3p orbitals active.
The state averaging included all three states: 1A', 2A’ and 1A”. Subsequent MRCI calculations
employed the full valence CI wavefunction with respect to the CASSCF active space. Additional
tests, which augmented the active space with the o* orbital, were also performed, but revealed
no significant effect. The MRCI was a 2-state calculation.
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5.3.3 Approximate counterpoise correction for adiabatic states

The proper counterpoise-corrected (CP) monomer state to be used in Eq. 5.1 is when the
orientation of the singly occupied orbital in the Cl monomer is identical to that as in the Cl-
HCI dimer. This is easy to ensure for the 1A” state, but not necessarily for the 1A’ and 2A’
states. The difference between orbital orientations in the dimer and the open-shell monomer is
schematically depicted in Fig.1. The orientation of the singly occupied orbital depends on the
variables (R, ). There are arrangements where the difference between the dimer and the Cl
monomer orientations is small, but there are also geometries where it is difficult to decide which
of the Cl monomer energies has to be chosen for proper removal of the BSSE. To alleviate the
difficulty Alexander, in his paper on B(?P)-H,'%® system, proposed: first to transform adiabatic
energies, calculated with dimer centered basis set (DCBS), to diabatic ones, and next calculate
interaction energy for diabats only.

Since only adiabatic states diagonalize the hamiltonian, and the diabatization procedure is
neither unique nor exact, we belive that one should have an alternative procedure for removal
of BSSE at the adiabatic level. Hence in this paper we calculated CP-corrected interaction
energy at the adiabatic level. To this end we obtained the Cl monomer energies which at
the RHF level correspond to the orientation of the dimer orbital defining the 1A’ and 2A’
states. First, the ground CP state of A’ symmetry was obtained. The second A’ state was
achieved by rotation of the singly occupied orbital in the RHF reference wavefunction to the
orthogonal orientation in the triatomic plane. RHF calculations were followed by RCCSD(T)
calculations. To calculate adiabatic interaction energies for both of the A’ states we "rotated"
the Cl monomer RCCSD(T) energies to be related to the same orientation of the singly occupied
orbital as in the dimer. The definition of the orientation angle + for the 1A’ dimer and +' for the
monomer are shown in Fig.la and Fig.1b, respectively. The rotation was performed according
to Eq.(11a) and Eq.(11b) of Ref.!% Tt should be noted that, strictly speaking, such a rotation
introduces coupling between monomer CP states, so the Cl monomer energies after rotation are
not rigorously adiabatic. As long as difference v — +' is small we can neglect the nondiagonal
term. The Cl monomer energies for CP corrected potentials were calculated as follows

ECL () = cos® (v —7") EY' () +sin® (y — v') B (90° — ) (5.2)

ESH (90° — ) = sin® (y — ') EY' (7') + cos® (v — +) E1 (90° — ') (5.3)

and the energy E® (') denotes the RCCSD(T) Cl monomer energy corresponding to the
orientation of the RHF singly occupied orbital described by angle +'. The v —+' difference was
calculated from the orientations of the orbitals at the RHF level. The ~ angle for the dimer
corresponds to the mixing angle in the adiabatic-diabatic transformation. Finally, the three CP
corrected adiabatic RCCSD(T) potentials for CI-HCI complex are obtained from the formulae

Viy = ECLHCU _ gCL _ gHC (5.4
Vow = ESLHCL _ gCL _ pHO! (5.5)
‘/iAII = EICXZHCZ — EIClu - EHCl (56)

To reveal what effect has the approximate CP procedure on the interaction energy, we compared
the results calculated with the rotated monomers energies and without such a rotation, for
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R =3.0 A. Figure 5.2 shows anisotropy for both A’ states obtained directly and Figure 5.3
with rotation of the monomers.

The curves obtained without rotation are less smooth than the curves for rotated monomer
energies. Quantitative differences are small, but this example shows that the rotation procedure
improves the quality of the adiabatic PESs. On the other hand the BSSE itself is not small
and must be removed.

5.4 Adiabatic-diabatic transformation

The diabatic surfaces provide more convenient representations for simulations of the Van der
Waals spectra of the system. These potentials contain information about couplings between the
adiabatic wavefunctions of the same symmetry. The adiabatic-diabatic transformation yields
diabatic states for which the non-adiabatic coupling matrix elements approximately vanish. The
diabatic states are obtained by an unitary orthogonal transformation of adiabatic states!'%® 109

v

—

B cosy sinvy ve 5.7

\\ —sin7y cosvy we

N

where the transformation angle v depends on the nuclear coordinates. The resulting diabatic
wavefunctions are no longer eigenstates of the electronic Hamiltonian. The Hamiltonian in the
diabatic (py, py, p.) basis is not diagonal and the matrix elements are

HH = COS2 /Y‘/IA’ + sin2 ’Y‘/QA/ (58)
Hyy = sin® yVi 4 + cos® Y Vour
Hyy = (Viar — Vaur) cosysiny

The fourth diabatic state, Hss, is exactly equal to the 1A” adiabatic state.

The transformation angle ~, the so-called 'mixing angle’, may be defined as the angle be-
tween the vector of singly occupied p orbital and the R vector. It is shown in Fig.1a. This angle
is a function of Jacobi coordinates of the system, and depends on the orientation of the HCI
molecule. Within a two-state model the mixing angle can in principle be obtained by numerical
integration of the non-adiabatic coupling matrix elements (NACMESs) using the relation

— 24" . .
dq aq‘ > (5:9)

This is quite computationally demanding procedure, which suffers from the fact that the
NACMEs are strongly varying functions of the geometry and have poles at the conical in-
tersections. Also, in real systems the integration is not entirely path independent, due to the
admixture of further states.!'® Eq. 5.9 is only valid for the two-state model, and diabatization
procedure is approximate in any case for polyatomic molecules. Therefore, we used a less ex-
pensive method which determines the mixing angle directly with reasonably accuracy.''' This
method is based on the transition angular momentum connecting the 1A” state with two states
of the A’ symmetry. We calculated matrix elements of the L, operator at the MRCI(SD) 12113
level of theory within the same basis set (cf. Sec. II A) and determined the mixing angle from
the following formula
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B ‘<1A’ ﬁy‘1A">
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The v angle from the MRCI calculations was subsequently used to transform the RCCSD(T)
surfaces. The relief map of the v ZCT mixing angle is shown in Fig 5.4.

This figure clearly shows three regions where the A’ states avoid crossing each other, and
the points where the ¥ and II states cross. These are the regions where the mixing is the
strongest and the angle in Eq. 5.7 reaches 45°. The conical intersection occurs at the reactive
side, Cl- - -H-C1, # = 0°, R ~ 3.0 A, but also at the "nonreactive" side H-Cl- - -Cl, § = 180°,
at two distances, 3.25 and 6.0 A. These intersections are related to the crossings of ¥t and II,
which switch there. The "reactive" conical intersection has been known for a long time. The
"nonreactive" one has not been reported previously. In general case, v from different methods
are not the same, since the PESs differ. For the CI-HCI complex, however, the v £¢T and RHF
were found remarkably close except for the region near the H-CI- - -Cl collinear arrangement,
cf. the plot of the difference yMECT — yRHF Rio 55 The 4yRCCSPT) which was not explicitely
evaluated, is expected to be even closer to the YMECT angle.

We expect that for the systems for which the anisotropy of the PES is qualitatively correctly
reproduced at the SCF level of theory this rule should hold. For such a system the anisotropy
is driven by electrostatic and induction interactions. Fig.4 reveals that there are significant
differences between yMECT and ~FHE only in the region where the 2A’ potential exhibits a
minimum. This is the region near the conical intersection, and we assume that the RHF
approach followed by RCCSD(T) procedure is not valid here. It should be stressed that adiabats
of the A’ symmetry could not be described properly in this region as they become nearly
degenerate.

v = tan (5.10)

5.5 Fits

The RCCSD(T)/aug-cc-pvTZ+(332) results for the V4, Vour and V4 potentials were ap-
proximated by an analytic expression composed of the short-range term (V,), and the asymp-
totic long-range part (V,):2% 114

V(R,0) =V (R,0) + Vis (R, 0) (5.11)
where
Van (R, 0) = G (R, 9) X~ 700) (5.12)
Terms d (#) and b () were expanded in normalized Legendre polynomials P{ (cos 6), respectively,
to the order L, and Ly, and term

Lg 3

G(R,0)=> Y gul'P(cosb) (5.13)

[=0 =0

to the order of Ls. The long-range part was chosen to be a damped asymptotic expansion that
included both induction (R™*) and dispersion (R~® and higher) components

Vas (R, 0) ZZ fn (Rb(O PU (cos 6) (5.14)
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where f,, function was the damping function of Tang-Toennies®?

fulw)=1—e") & (5.15)

Van der Waals coefficients start from C,o and end at Cigp. In the case of the non-diagonal
diabatic matrix element, Hi,, we used associated Legendre polynomials of the second rank
P? (z) in Eq. 5.13, to ensure correct behaviour at the colinear arrangements. The Eq. 5.14 for
the long-range part was slightly modified, and included also the P? (x) polynomials:

10
VI (R,0) = 3 1 (B (0)) - T2 P2 (cos ) (5.16)
n=4

The errors of the fits in the Van der Waals region and the long range do not exceed 1%
generally. There were errors of several percents for some geometries depending on the surface.
In the highly repulsive area, for very small values of the R distance, errors of fitting may exceed
10%. Above fits were obtained for purpose of graphical representation of potential surfaces.

5.6 Results and discussion

5.6.1 Topology of adiabatic potentials

Contours of fits of the 1A', 2A" and 1A” adiabats are shown, respectively, in Figs. 5.6,
5.7,and 5.8.

The 1A’ surface has two minima. The global minimum occurs for the T-shaped geometry
(R=3.08 A, § = 88° and D, = 600.4 cm™"). There is also a local minimum at the collinear
geometry (R =3.90 A, § = 0° and D, = 438.2 cm™"). The HCI. - -Cl geometry corresponds to
a saddle point at R = 3.73 A , and the interaction energy at the saddle point is elevated 425
cm ! above the global minimum.

The topology of the 2A’" potential shows only one minimum at the collinear geometry (R =
3.68 A, = 180° and D, = 126.0 cm™'). The region for the angular variable # less than 60° is
repulsive. The attractive area of this PES occures when the free Cl atom approaches the HCI
molecule from the chlorine side.

The 1A” potential has two collinear minima. The minimum for # = 0° is the same as collinear

minimum of the 1A’ surface. The minimum for the HCI- - -Cl arrangement is characterized by
R=3.72A and D, = 180.0 cm~".

5.6.2 Diabatic potentials

The ab initio diabatic PESs were constructed using energies from the RCCSD(T) calcu-
lations and the mixing angle from the MRCI(SD) method. Figs. 5.9, 5.10, 5.11 represent
respectively contours of the Hy;, Hyy and H;y diabatic PESs.

The Hy; diabat reveals only one minimum for the T-shaped arrangement of the atoms. The
position of this minimum is at R = 3.07 A , @ = 92°, and the well depth is 602 cm . The
region in the neighborhood of the collinear Cl. - -H-Cl geometries are in general repulsive.

The Hys and Hss diabats have two collinear minima, for Cl- - -H-CI and H-CI- - -CI arrange-
ments. Table 5.6 lists the locations and well depths.
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The non-diagonal term of the hamiltonian in the diabatic basis, Hy,, has a positive part for
geometries with # < 90° and a negative region for # > 90°. The H;5 diabat vanishes for the
collinear arrangements of the atoms.

To qualitatively analyze the anisotropy of the diabatic potentials, we modeled the elec-
trostatic interaction for the Hi;, Hoy and Hsz diabats. The CI-HCI complex was treated as
the diatom-diatom system, so the position of the singly occupied orbital of the Cl atom was
described by two angles (6,,0). The orientation of the HCl diatom was described by 6, an-
gle. The electrostatic model accounts for the dipole-dipole, dipol-quadrupole terms, and the
quadrupole-quadrupole interaction components. Since the Cl atom has no dipol moment, we

used the following formulae:!!?
V(R,0,,0y,0) = Vy—0, + Vo.—e, (5.17)
where 346
Vi—o; (R, 0;,0;,¢) = 3 ;%47 (cos; (3cos®@; — 1) + sin 6; sin 26; cos ) (5.18)
30,0;
Vo,—e, (R,0;,0;,¢) = 1 R5J (1 —5cos*0; — 5cos® 0 + (5.19)

17 cos? 9,~00529j + 25sin? 6, sin? 0, cos? ¢

+16sin ; cos 6; sin §; cos B cos @)

and i # j € {a, b}

The value O, of the quadrupole of the Cl atom was set at 2.214 DA | and d, and 6, of HCI
were equal 1.1996 D and 3.707 DA, respectively. The quadruple moment of HCI was taken at
the center of mass. To obtain electrostatic models of the diabatic potentials we appropriately
set the (0,, ¢) pair of angles, i.e. for the Hy; diabat we have (0,0) (singly occupied orbital
along the R direction), for the Hyy diabat-(90,0) (singly occupied orbital perpendicular to the
R direction, and lying in the triatomic plane), for the Hs; diabat-(90,90) (singly occupied orbital
perpendicular to the triatomic plane). Note that the Hs3 surface is the same as the 1A” adiabat.
Figs. 5.12, 5.13, 5.14 represent contours of the modeled electrostatics in the Hy;, Hoo and Hgss
diabats, respectively.

The electrostatic modeling correctly predicts the pattern for anisotropies of the long-range
diabatic PESs. One may distinguish 3 regions related roughly to 3 forms: Cl---H-Cl, T-shaped
and H-CI- - -Cl. The electrostatic model predicts stabilization for T-shaped of the H;; diabat
and stabilization for collinear forms of the Hyy and Hjz diabats. However, quantitatively the
electrostatic model is poor unless the intermolecular distance becomes large.

5.6.3 Comparison of restricted and unrestricted approach

To reveal differences between the restricted and unrestricted coupled cluster methods we
calculated, at selected points, the adiabatic interaction energies using both approaches. At first,
we calculated the reference wavefunction at the RHF level of theory. Next, the RCCSD(T) or
UCCSD(T)?! method were used. Both calculations started with the RHF orbitals. The results
are shown in Table 5.1 for R = 4.25 A and # = 90°. The UCCSD(T) result for 2A’ state is
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not shown because of divergence of the UCCSD(T) calculations in this case. This comparison
shows that both, restricted and unrestricted, approaches give similar results.

5.6.4 Role of bond functions

The role of bond function in intermolecular interaction calculations is to improve the de-
scription of the intermolecular electron correlation effect - the dispersion energy .'%116 In order
to elucidate the effect of bond functions, we calculated the cut through the 1A’ adiabat at
6 = 90° without application of those functions. Fig. 5.15 shows how bond functions affect the
values of the interaction energy. The global minimum of 1A’ is about 20% shallower than the
result obtained with bond functions (586 ¢m™!), and equals to 464 cm™".

The position of this minimum also changed to R = 3.25 A. Bond functions move the position
of the global minimum towards the center of mass of the HCl molecule. The effect of further
extension of the correlation-consistent basis set was also checked. To this end, we performed
calculations at two characteristic points: at (R = 4.0A, § = 0°) - the IT-state minimum - and at
(R=2.5A,9=0°) - in the repulsive wall. Two basis sets were used: an aug-cc-pvQZ+(33221)
basis [(33221) stands for 3s3p2d2flg|, which proved extremly accurate for rare gas complexes
with molecules,?” 17119

and the largest correlation-consistent set available, aug-cc-pv5Z. The results are listed in
Table 5.7, and compared with those obtained with aug-cc-pvTZ+(332), used throughout this
study. One can see that these large basis sets changed the interaction energies in the region of
the well only slightly. In the II-state minimum region one obtaines the lowering of about 1%
and 2% for the X1 and TIT states, respectively. In the repulsive wall the changes are somewhat
larger, a lowering of 4-5% and 3% for the ¥ and II states , respectively. It is also interesting
to note that the bond functions appear to be efficient in the minimum region, but high up in
the repulsive wall the aug-cc-pv5Z basis provides lower result than the aug-cc-pvQZ-+(33221)
basis. This is due to the fact that bond function are effective in recovering the inter-monomer

(dispersion) correlation, but are not appropriate for the intra-monomer correlation corrections
116

5.6.5 Comparison of RCCSD and CASSCF/MRCI results

As stated in Sec. II B, application of the single reference RCCSD(T) approach to the second
state of the A’ symmetry is not illegitemate as long as the states are well separated, and differ
by a single electron promotion to single occupied open shell - in our case from one p orbital to
another p orbital. An independent verification of the adopted approach is therefore necessary,
and may be achieved by parallel evaluation of the PES’s by means of the MRCI technique.
In particular, if the CC approach is to be trusted, the MRCI(SD) size consistency- '*>'?! and
counterpoise-corrected results should agree well with the CCSD results obtained with the same
basis set.

To corroborate the RCCSD and RCCSD(T) calculations we used CASSCF!?%123 followed by
the MRCI(SD) calculations. We used the aug-cc-pvTZ+(332) basis set, the same as previously
described in section II A. To correct for the BSSE and size consistency error the MRCI(SD)
results were calculated as follows:'%®

\% (R, 0) = EC’lfHCl (R, 9) — ECZ (R, 9) — EHCZ (R, 0) — ASC (520)
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where
Agsc = Eci—nci (00) — Egy (00) — Eger (00) (5.21)

and all energies in Eq. 5.20 were calculated with DCBS. The active space was limited to the
valence shell and composed from 3s and 3p orbitals. In Table 5.2, 5.3, 5.4, 5.5

we report the results for both A’ states for R = 3.0 A and R = 4.25 A , and for the set of
values of angular variable.

The agreement between the multireference CI results and the restricted CCSD numbers are
in general satisfactory. For the 2A’ state there are differences in the attractive region. The
RCCSD curve has a minimum at the collinear HCI:--Cl geometry while the multireference results
show minimum for somewhat bent geometries. Note that the MRCI may be somewhat distorted
by neglecting rotation part of the CP correction, see Sec.IIC. The whereabouts of collinear
geometries should be more strongly influenced by close proximity of the conical intersection.
However, location of the crossing points ¥ 7-II that are the closest to the center of mass of the
HCI molecule practically does not change with applied computational method. For the 8 = 0°
collinear arrangement, the crossing point between £+ and II curves occures at R = 3.1 A. The
RCCSD and MRCI+Q method give the same location of the crossing point. The Fig. 5.16 shows
the crossing points for # = 0° at the RCCSD and the RCCSD(T) levels of theory. Inclusion of
triples contributions has practically no effect on the location of the crossing point.

In case of the short-range ©*-TI crossing point at the distance R = 3.4 A for the angular
orientation # = 180°, the level of applied theory has also practically no influence on its location.
There is an additional, long-range crossing point far from the HCI molecule and its location
noticeably changes when different methods are applied. Fig. 5.17 shows that the location of
this point is in the range of R = 5.75 A and R = 6.0 A depending on method.

Additionally entire diabatic surfaces were calculated using the MRCI+(Q method with the
smaller aug-cc-pVDZ basis set augmented with the same set of the bond functions, (332), as in
the coupled cluster calculations. Anisotropy of the Hy; and the Hss surfaces are qualitatively
similar to anisotropies of the RCCSD(T) diabats. Figs. 5.18 and 5.19 show contours of the
H,; and H, diabats respectively.

5.6.6 Comparison with semiempirical model of Dubernet and Hutson

Dubernet and Hutson presented a semiempirical PES of the ClI-HCI complex derived from
the known potentials for Ar-HCI, Ar-Cl and Ar-Ar systems. The PES was used to predict Van
der Waals spectra for the CI-HC] complex.® The overall anisotropies of the ab initio adiabatic
surfaces are very similar to the semiempirical ones (see right panel of Fig. 1 in Ref.®®). The
most significant difference is in the position of the global minimum of the ground 1A’ surface.
The DH (Dubernet and Hutson) 1A’ adiabat has the global minimum for the Cl.--H-CI collinear
geometry (6 = 0°) with the well depth of 383 cm™'. The global minimum of the 1A’ RCCSD(T)
surface occurs at a T-shaped arrangement of the atoms (6 = 90°), and has a depth of 586 cm™".
The DH surface has a local minimum for the T-shaped geometry, but shallower (347 cm™!) than
ab initio one. The position of the T-shaped minimum on the RCCSD(T) 1A’ surface is 0.5 A
closer to the center of mass of the HCI molecule in comparison to the DH adiabat. The Tab. 5.6
collects positions and well depths of the 1A” DH and RCCSD(T) surface.

The DH and ab initio 2A’ surfaces are qualitatively similar. The excited 2A’ state has a
minimum near the HCI- - -Cl collinear arrangement for DH (6 ~ 150°). The RCCSD(T) 2A’
surface has global minimum located exactly for HCI---Cl collinear arrangement. The well depth
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of the RCCSD(T) surface is almost twice as large as the well depth of the DH model. The
values are reported in Tab. 5.6.

The 1A" surface is very similar in both approaches. In this case the doubly occupied p
orbital points towards the HCI molecule, and the Cl-HCI surface should be very similar to that
of the closed shell Ar-HCI complex. In Tab. 5.6 we reported data of the minima of the 1A”
state for comparison with DH values.

Our ab initio diabats are in general deeper in comparison with the diabats obtained by
Dubernet and Hutson.® However, the overall anisotropy is very similar. The position of the
T-shaped global minimum of the ab initio Hy; diabat differs somewhat from the location of
global minimum on the DH diabat. The RCCSD(T) method moves this minimum 0.5 A closer
to the center of mass of the HCI molecule. The well depth of the ab initio Hy; surface is deeper
by 265 cm~!. The Tab. 5.6 contains locations and well depths of the RCCSD(T) diabats and
DH ones, for H;; and Hyy surfaces. The well depths for the collinear arrangements in the Hgo
and the H33 diabat are in the close agreement with the semiempirical surfaces of Dubernet and
Hutson.

5.7 Summary

We presented ab initio RCCSD(T) adiabatic potential energy surfaces for the Van der Waals
CI-HCI complex. The global minimum of the ground adiabatic state occurs for a T-shaped
geometry with a well depth of 600 cm~t. The Dubernet and Hutson semiepirical ground state
potential has the global minimum at a collinear Cl- - -H-Cl geometry with a well depth of 383
cm~!. Despite these quantitative differences, qualitatively the shapes of the ground 1A’ as well
as the excited 2A’ and 1A"” PES’s are remarkably similar, attesting the physical foundation of
the Dubernet and Hutson model.

The non-adiabatic couplings were calculated at the MRCI(SD) level of theory, and used
to obtain the RCCSD(T) diabatic surfaces. Anisotropies of the adiabats and the diabats are
similar in both ab initio and semiempirical approaches, but due to much deeper well depths
of ab initio PESs in general, they can certainly give different patterns of the Van der Waals
spectrum.

The regions close to the conical intersections revealed, obviously, problems with the RHF/
RCCSD(T) approach, but in general RCCSD(T) proved to be quite robust. We found three
conical intersections: one "reactive" at the collinear Cl- - -H-Cl arrangement and two "nonreac-
tive" at H-CI- - -Cl. The second "nonreactive" conical intersection is located quite far from the
center of mass of the HCI molecule: at R ~ 6.0 A.

The Y F-IT crossing at the reactive Cl- - -HCI arrangement is due to the fact that the con-
tact through the doubly-occupied orbital is favored by the dipole-quadrupole and quadrupole-
quadrupole attraction - then the II state lies below the ¥ state. In the short-range, however,
this arrangement causes larger exchange repulsion, which eventually elevates the X* over the
IT state. Such a switch of balance, which results in X 1-TT crossings, was also observed for e.g.
Ar---O~ % and Ar---Cl .1#

The -1 crossings at the nonreactive HCI- - -Cl arrangement are due to a somewhat more
complex balance. Asymptotically, the Cl(quadrupole)- - -HCl(dipole) interaction favors the %
state. However, at smaller, but still relatively large R the Cl(quadrupole)- - -HCl(quadrupole)
becomes sizeable and dominates, favoring the IT state. This rationalizes the long-range crossing.
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In the short-range, however, the II symmetry creates more exchange repulsion, which again
elevates the ¥ above the II state.
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Table 5.1:

75

Comparison of the restricted and unrestricted CC results at B = 4.25A, 6 = 90° in

[em™]

State RCCSD RCCSD(T) UCCSD  UCCSD(T)
1A’ -181.02 -201.44 -183.68 -204.04
2A’ -14.77 -37.64 not conv. not conv.
1A" -59.21 -81.76 -59.34 -81.90

Table 5.2:

Comparison of the RCCSD and MRCI(SD)+Q results for 1A’ state at R = 3.0A, in
[em ™

0 RCCSD RCCSD(T) MRCI(SD)+Q(Davidson) MRCI(SD)+Q(Pople)

0 3330.37 2883.79 3272.16 3264.66

20 2039.27 1646.97 2060.61 2048.53

40 590.37 287.76 526.87 517.89

60 -113.33 -359.41 -141.97 -

80 -348.25 -574.78 -366.16 -375.96

90 -364.90 -586.03 -378.49 -388.00

120 - -380.35 -52.62 -212.86

140 19.74 -163.76 1.24 -6.08

160  266.09 102.40 239.11 233.08

180 451.66 299.20 432.95 427.39

Table 5.3: Comparison of the RCCSD and MRCI(SD)+Q results for 2A” state at R = 3.0A, in

[em ]

6 RCCSD RCCSD(T) MRCI(SD)+Q(Davidson) MRCI(SD)+Q(Pople)
0 3930.42 3577.35 3878.29 3870.5
20 3741.56 3406.67 3598.93 3594.18
40 2804.85 2585.45 2800.26 2789.84
60  2184.39 2019.62 2179.21 -

80  2123.49 1971.55 2117.09 2105.94
90  2175.63 2023.9 2165.03 2154.03
120 - 1844.24 1907.25 2048.59
140 1664.89 1513.32 1657.49 1647.64
160 1166.74 1017.2 1164.84 1155.84
180  868.12 718.10 861.22 853.32
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Table 5.4:

Comparison of the RCCSD and MRCI(SD)+Q results for 1A’ state at R = 4.25A,
in [em ™

6 RCCSD RCCSD(T) MRCI(SD)+Q(Davidson) MRCI(SD)+Q(Pople)

0 -322.03 -362.59 -319.87 -324.02

20 -288.79 -324.97 -326.49 -329.37

40 -229.48 -258.03 -258.4 -261.22

60  -193.15 -216.64 -208.75 -211.47

80  -182.52 -203.66 -185.1 -187.85

90  -181.02 -201.44 -178.65 -181.44

120 -158.75 -177.62 -154.3 -157.07

140 -129.51 -147.67 -135.47 -138.01

160 -101.21 -119.31 -132.51 -134.62

180 -101.39 -121.31 -97.79 -100.50

Table 5.5:

Comparison of the RCCSD and MRCI(SD)+Q results for 2A’ state at R = 4.25A,
in [em™!]

# RCCSD RCCSD(T) MRCI(SD)Q(Davidson) MRCI(SD) Q(Pople)

0 202.38 165.91 200.78 197.23

20 161.06 127.66 199.46 195.22

40 81.74 53.67 113.46 109.45

60 20.02 -4.77 40.81 37.07

80 -8.42 -31.79 -0.01 -3.62

90 -14.77 -38.59 -10.7 -14.31

120 -32.08 -04.1 -29.09 -32.65

140  -47.89 -68.98 -34.21 -37.99

160  -63.78 -83.72 -24.76 -27.85

180  -58.41 -75.22 -95.66 -97.69
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Table 5.6:

7

Locations and well depths of adiabatic and diabatic surfaces. Comparison of the
RCCSD(T) and DH results.

Method Location D.|cm ™!
1A

RCCSD(T)® R=3.08A,0=88 600

Dubernet, Hutson® R = 3.60A , 0 ~ 90° 347

RCCSD(T) R=3.90A,60=0° 438

Dubernet, Hutson R~ 3.90A ,0=0° 383
24

RCCSD(T) R=368A,0=180° 126

Dubernet, Hutson R ~ 4.20A |, 8 ~ 150° o0
AII

RCCSD(T) R=3.90A,6=0° 438

Dubernet, Hutson R~ 3.90A , 0 = 0° 383

RCCSD(T) R=372A |9 =180° 180

Dubernet, Hutson R ~ 3.70A , § = 180° 200
Hiy

RCCSD(T) R=3.07A,6=92 602

Dubernet, Hutson R = 3.60A , 8 = 100° 335
Hyy

RCCSD(T) R=390A,0=0° 427

Dubernet, Hutson R~ 3.90A ,0=0° 383

RCCSD(T) R =3.63A,6=180° 205

Dubernet, Hutson R = 3.70A |, 0 = 180° 200

@ this work ? Values from Ref.%®

Table 5.7: Basis set effects for the colinear arrangement # = 0°. Energies in cm™".

Distance [A] aug-cc-pvTZ+(332) aug-cc-pvQZ+(33221) aug-cc-pvhZ
I
2.5 22279.2 21690.3 21495.4
4.0 -429.2 -438.6 -436.6
29+
2.5 14040.7 13526.5 13354.4
4.0 236.5 233.4 234.9

1



CHAPTER VI

Perturbational analysis of the interaction energy of the
C1(*P)- - -HCI(!X") Van der Waals complex

6.1 Introduction

The purpose of this Chapter is to report and analyze components of the interaction energy
of the CI(*P) atom with the HCl molecule in its ground state by means of Cybulski et al’s
perturbational formalism. Supermolecular calculations of the PESs 2% for this system together
with perturbational analysis done in this Chapter provide a complete insight into the nature of
the van der Waals forces in the entrance channel to the Cl4+HCI—CI+HCI reaction.

6.2 Methodology of Intermolecular Unrestricted Mgller-Plesset Per-
turbation Theory (I-UMPPT)

The supermolecular MP perturbation theory derives the interaction energy corrections as the
differences between the dimer (supermolecule) correction and the sum of monomer corrections
in every order of perturbation theory.?!

AE™ =g B - El"  n=UHF,23,4,... (6.1)

Superscript UHF stands for Unrestricted Hartree-Fock level.

Let us denote the sum of corrections up to the n-th order as AE (n). In the language of
SAPT (Symmetry Adapted Perturbation Theory) each AE™ component includes well defined
contributions to the interaction energy of the system. These contributions are of electrostatic,
induction, dispersion and exchange character when expressed in double perturbation expansion
form.

Application of SAPT to open-shell systems requires a properly generalized formalizm. To
this end Cybulski et al. developed the TUMBPT.

6.2.1 Components of AFVHF

The UHF correction can be divided into two terms:

AEVHF — ARHL | A pUHF (6.2)

78
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The first term of sum in equation ( 6.2) denotes Heitler-London contribution and the remaining
term is UHF deformation contribution. AE"Y is defined in the following way

m  (AAB|H|AAB)  (A|Ha|A) (B|Hp|B)
AET = UBlAAB)  (AA)  (B[B) (6.3)

where A is the antisymmetrizer for the dimer AB. A and B are UHF wave functions of the
monomers A and B, respectively. Hag, Hy and Hg are the dimer and monomer Hamiltonians,

respectively. The Heitler-London term (6.3) is divided into electrostatic, Y and exchange,
egchh) contributions. These components are defined as
1V = (AB|V|AB) (6.4)
el = ARME — €10 (6.5)

The operator V is intermolecular interaction operator. The UHF-deformation term defined in
(6.2) has its origin in mutual electric polarization restrained by the Pauli principle.?!

6.2.2 Partitioning of the second order correction: AE(?

The second-order supermolecular interaction energy can be divided into the following terms:

20 2 2
AE® = {12 + &) + AED) + AED), (6.6)
where egi) is the second-order electrostatic correlation energy with response effects, eggr)) is

the second-order UHF dispersion energy. The remaining terms in equation (6.6) describe,
respectively, the second order deformation correlation correction to the UHF deformation and
the second-order exchange correlation.

6.3 Ab initio calculations of I-UMPPT corrections

Calculations of perturbation intertaction terms were performed with the Dimer Centered
Basis Set (DCBS). This is equivalent to the counterpoise (CP) correction method of Boys
and Bernardi.’% 196107 The CP procedure is straightforward as long as one considers single
non-degenerate electronic states for the dimer and for the monomers. However, in the case of
degenerate open-shell monomers the procedure becomes more involved. This is because the de-
generacy of the monomer energies is removed by the effect of partner’s orbitals, and each dimer
state is related to a different CP monomer state. If the dimer states are of different electronic
symmetry, as it is, for example, for He('S)+NO(X?IT)?»® or Ar('S)+OH(X?IT)?® systems, one
can still easily match, by using symmetry, the proper monomer energy with the dimer energy.
If not, the situation is more complex as described in Ref.!?

There is also, in addition, spin contamination problem, which arises in UHF calculations
for open-shell complexes. To obtain reliable interaction energy and its components one has to
be sure that the spin contamination for monomers and dimer is practically the same. In our
DCBS calculations Cl monomer and dimer had the same spin contamination S? = 0.7602.

The calculations were performed using GAUSSIAN 9226 suite of programs and intermolecular
perturbation theory package TRURL 94!27 which includes I-UMPPT corrections.
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6.3.1 Basis set and geometries

The CI-HCI complex is described in Jacobi coordinates (R, #). The R variable denotes the
distance between the center of mass of the HCl monomer and the Cl atom, and € denotes the
angle between the R vector and the HCI bond axis. 6 = 0° corresponds to the CI- - -H-Cl
collinear sequence. The HCl monomer was kept rigid during calculations and its interatomic
separation was set at r = 1.275 A. The origin of the system is placed at the center of mass
of the HCI molecule. Calculations of the perturbation components were performed with the
augmented correlation-consistent polarized valence-triple-zeta (aug-cc-pvTZ) basis function set
of Dunning et al. %71%' supplemented with an additional set of bond functions. The set of bond
functions [3s3p2d| of Tao and Pan ,3¢ with the exponents:sp 0.9, 0.3, 0.1;d 0.6, 0.2, was used.
Bond functions were centered in the middle of the distance of the Cl atom from the center of
mass of the HCI molecule. The basis set is denoted as aug-cc-pvTZ+(332).

6.4 Decomposition of the interaction energy

The radial and angular dependence of the Heitler-London exchange, electrostatic and disper-
sion contributions to CI-HCI interaction energies of 1A’,2A" and A" is shown by contour plots.
In the next subsections, we will characterize features of the interaction energy components, and
construct PESs at the HL exchange plus dispersion level of theory.

6.4.1 AFE (HL) energy

The AEHL term for states 1A', 2A’ and A” is shown in Figures 6.1, 6.2 and Figure 6.3,
respectively. This Heitler-London term has strong angular anisotropy and largely determines
the topology of interaction potentials in the short range, in the very long range and for the
CI-CIH arrangement. For the 1A’ state there is a wide basin of negative energies starting from
R = 4.25 A. The global minimum occures for the collinear geometry at R = 4.5 A and its well
is 77 cm ! deep, entirely due to electrostatics. The T-shaped minimum around 6 = 80 — 90°
is also present with the well depth of 50 cm™'. Contrary to the HL contribution for the 1A’
state, the 2A’" HL: energy is repulsive for the whole range of geometries. It is less repulsive for
the geometries where Cl atom approaches HCI molecule from its chlorine atomic subunit. This
is because the electrostatic interactions favor this region.

6.4.2 First order electrostatic correction: eo

The first-order electrostatic contribution for the 1A', 2A’" and A” states is shown in Figures
6.4, 6.5 and Figure 6.6, respectively. For the ground state of the CI-HCI van der Waals complex,
Y is attractive in a wide range of geometries. This is because the quadrupole-quadrupole
interaction is attractive for this orientation of the Cl quadrupole with its negative end pointing
towards the positive end of the HCI quadrupole.

For the 2A’ state there are regions of repulsive electrostatic interaction. For the collinear
arrangement they correspond to the ¥ state, where energy of the ¥ state is more repulsive then
the IT state.

For the excited A” state there is an island of repulsive electrostatics for the region of angles
0 greater than 90°, starting approximately from R = 4.5 A. The reason for this feature is
unfavorable orientation of the Cl monomer quadrupole. In this range of geometries the Cl
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quadrupole has its negative lobes pointing towards the negative lobes of the HCl quadrupole
and it makes electrostatic interaction repulsive.

(20)

6.4.3 Second-order dispersion correction: €y,

The second-order dispersion term, 651213;)»’ is shown in Figures 6.7, 6.8 and Figure 6.9 for the

1A', 2A" and A" states, respectively. This term is only weakly anisotropic, and is similar for
all of these three adiabatic states. Dispersion energy is deeper near the collinear arrangement,
for 6 = 0°. The dispersion term is important in the intermediate range and for the CI-CI-H
arrangements.

For the 1A’ state the dispersion term and electrostatic term are both attractive and of
similar magnitude. For the 2A’ state the electrostatics is repulsive, and it can be seen that
the minimum on the 2A’" HL energy plus dispersion term surface is driven by the second order
dispersion correction.

6.4.4 Sum of Heitler-London energy and second order dispersion correction

The HL-exchange term and the dispersion correction can be used to construct approximate
PESs for three diabatic states. They are given in Figures 6.10, 6.11 and in Figure 6.12 for the
1A', 2A" and A" adiabats, respectively. Incidentally, they qualitatively resemble the adiabatic
PESs from RCCSD(T) calculations.'?

The 1A’ AE (HL) + e((ﬁgg surface has two minima. The global one of the T-shaped character
and is located at R = 3.5 A and 6 = 120° and its well depth is 400 cm™". The second local
minimum with the well depth equal to 319 cm ™! is located at the collinear geometry for 6 = 0°
and R = 4.0 A. This is in qualitative agreement with the supermolecular RCCSD(T) PES
presented in Ref. '*® However, the global minimum well of RCCSD(T) 1A’ PES is almost 200
cm~! deeper and located closer to the HCI molecule than perturbational PES reported here.

The 2A" AE (HL) + efﬁgr)) surface has one minimum for the collinear geometry for § = 180°
and R = 3.75 A. This minimum is 126 cm™" deep and, incidentally, it is in excellent agreement
with the RCCSD(T) adiabatic PES (Figure 5b in Ref. #).

The A” perturbational PES has two minima located at collinear geometries for # = 0°
and ¢ = 180°. The global minimum has the same location and well depth as local collinear
minimum of the 1A’ adiabatic surface. The local minimum occures at the chlorine side of the
HCI molecule at R = 3.75 A and is 226 cm™! deep. This is in qualitative agreement, with the

RCCSD(T) PES.



J. Ktos: "Van der Waals complexes..." 85
7.0
] -
~N
1 ~N
— N
6.5 ~ o
] -
] -2Q,
| N
6.0i - SO
~ ~
— ~ ~
| ~ ~N
_ S N
_ : N
5.5 - 40, _ .
— \\ \\ \
N -60_ T~ \
5.0 N ~_ S~ N
S~ ~ ~ o N
a2 7] _10Q \\ ~ - N
4.5 — ~ ~ AN \ \_
: — ~ S o = - AN N - - - _ _
_ o =~ < N ~
N ~ o ~ - \\\ ~N. 020 T Tm===--
7 ~ ~ ~ ~
4.0— =~ 800 T, S~X-_IZzc---z-co¢
3.5 T000:3333=3 Too--o----c-z=
7 ~ - _ 7-2000 _ ==
3.0 o= = 2000 — _ _ _ _ _ _ _
y 100005 == 2 CTICZIIIZZIZZZIIZZIs
2.5 =Iz=I----I-C-I-C-----Z-Z:Z

o —

Figure 6.4:
Contour plot

unit [em™!]

T T T
20 40 60 80 100 120 140 160 180
Theta

of the first-order electrostatic correction for the 1A’ state. Energy



86 Chapter VI: Perturbational analysis of the CI- - -HCI PES.

[e)} ~J
)] o

[e)}
o

O

(€)1 ul
(@] ul

= [~y

o ul
[\®]
o~

w
(6]
/

w
o

R/A
‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘

N
(€3]

0 20 40 60 80 100 120 140 160 180
Theta

Figure 6.5: . .
Contour plot of the first-order electrostatic correction for the 2A’ state. Energy

unit [cm™!]



J. Ktos: "Van der Waals complexes..."

7.0
] ~ \
N
] ~ \
6.57 \\
] N\ \
T~ \ 10
= N
6.0 ~ -20
- ~ \
] \\40 -30 \
] NN \ \
sot SN
N \
7 -70 T~ Y \
= \\\\\\\ \
507 4002 I~ <\ \
5 ] EENNNNNA RN
4.5 \i\t\\\\ ”
2] 200 §§§\\\\\ _ -
] S~ AN -:
] - N - _
1078000 >0 R3333 = s
4.0 ~ =~ ~ S = ===
R “T~_ > Ss E ===
- \\\\ ~_ _
.57 SRR
5.0 TZoC8000 TT--—o o ___________
| -100005Z5SSSEZZZZZZZZZZEs
5.5 —======z SZZz-=-=-=--
17 T 17 T 7 T \ \ ]
0 20 40 60 80 100 120 140 160 180

Figure 6.6:

[em™]

Theta

87

Contour plot of the first-order electrostatic correction for the A” state. Energy unit



88

Figure 6.7:
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CHAPTER VII

Ab wnatio calculations and modeling of 3-dimensional

adiabatic and diabatic potential energy surfaces of
F(°P)- - -Hy(!X") Van der Waals complex

7.1 Preface

The CCSD(T) methodology as applied to CI-HCI in Chapter V proved to be very successful.
However, it may be applied to systems where the manifold of surfaces ralated to the ground
state Cl atom is well separated. This is not the case for Hy-halogen complexes which reveal
wide areas of avoided crossing. In this and the following Chapters the Author has proposed
a novel model approach to such complexes. It takes advantage of relatively simple electron
charge density of the hydrogen molecule and interpolates the total PESs from very accurate
CCSD(T) calculations at the highly symmetric configurations: collinear and T-shaped. The
MRCI calculations are also necessary, but only to evaluate the nonadiabatic coupling between
the adiabatic surfaces. Both adiabatic and diabatic PESs are obtained.’ The intra-monomer
stretch coordinate is incorporated and the spin-orbit coupling accounted for.

7.2 Introduction

Because of its experimental accessibility, the reaction of F with Hy and its isotopomers
has become the paradigm for exothermic triatomic reactions.””'?® The high-quality ab initio
potential energy surface of Stark and Werner (SW) ?® has been used in a number of quantum-
scattering calculations '2°7136 quasiclassical trajectory studies'®!37 and other investigations of
the properties of the F-H, system.'?® 10 This theoretical work has successfully reproduced
the major features seen in both the photodetachment spectrum of the FH, ion'?!3 and
the molecular-beam scattering studies of the reaction of F with Hy,,'3 Dy,'*' and HD .'*?
Recently, full framework for the quantum treatment of reactions of the fluorine atom with
molecular hydrogen was developped ,°” which involved four potential energy surfaces (PESs)
and two, coordinate-dependent ab initio-derived spin-orbit interaction terms. This pioneering
study established small overall reactivity of the excited (*P) spin-orbit state of F (which is not
allowed adiabatically), and led to conclusion that the dynamics of the reaction will be well
described by calculations on a single, electronically adiabatic PES.

Rapid and remarkable progress in quantifying the details of the F+H, reaction brings about
the issues previously deemed of either none or secondary importance. One such issue is the

94
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role of the Van der Waals interactions in the entrance channel. This trend has been explicitly
expressed by Skouteris et al.: "The study of chemical reaction dynamics has now advanced to
the stage where even comparatively weak Van der Waals interactions can no longer be neglected
in calculations of the potential energy surfaces of chemical reactions" .%* This statement was
prompted by their establishing that strong preference of production DCI vs. HCI can be directly
traced to the existence of a shallow Van der Waals well in the entrance channel to the reaction.

A beneficial role of the Hs rotation in promoting the reaction was already established on the
SW (Stark and Werner) surface which favors bent transition state.!*14* Recently, Balakrishnan
and Dalgarno'®® showed that in the low temperature limit its rate coefficient is controlled by
the attractive Van der Waals interaction. In addition, the latter work proved the rate to be
sensitive to the details of the potential energy surface in the entrance channel, especially the
hights of the of the entrance channel barrier and the depth of the Van der Waals well.

To model and accurately quantify the entrance channel, it is necessary to have accurate
description of the Van der Waals interaction that determines potential energy surface (PES)
in this region. For closed-shell system such an accurate treatment has been achieved for many
model complexes. However, for open-shell systems, necessity to consider several states at
a time, some of them of the same symmetry, presents a formidable challenge. On the one
hand, the multireference configuration interaction (MRCI) techniques, which are best suited
for multiple-surface problems including transition states, is difficult to apply for Van der Waals
interactions because of the issues of consistent evaluation of monomer and dimer energies with
respect to size, one-electron basis set, and configuration selection.!” On the other hand, the
coupled cluster (CC) techniques which easily cope with the above mentioned problems, and
are so successful with closed shells'® may be helpless when it comes to several states of the
same symmetry, especially when close to the avoid crossings. To alleviate these difficulties we
have recently proposed a combined application of both the coupled cluster singles, doubles and
non-iterative triples excitations (CCSD(T)) and MRCI approaches to obtain accurate PESs in
the Van der Waals region. The approach, termed CCSD(T)-Model (CC-M), was used in the
entrance channel of the Cl4+H, 6 reaction, and provided accurate PESs for this complex.

In this paper, to provide further justification for the CC-M approach, it is used to generate a
set of new ab initio based model potentials for three states of the F-+H, complex in the Van der
Waals region. The three states arise from the interaction of Hy with the triply degenerate 2P F
atom. The electron configuration of F gives rise to 221 and 2II states in the C,, configuration,
to 2A 1, 2By, 2B, states in the triangular Cy, geometry, and to 12A’, 22A" and ?A” states in C,
geometries. Accurate PESs for all three states have been calculated by Werner and collaborators
96,97,138 and thus are available to verify the quality of our PESs.

The essence of the CC-Model approach is to calculate accurate CCSD(T) interaction en-
ergies only for two highly symmetrical configurations, the Cs, and C,, geometries, and then
model three lowest diabatic surfaces of the C; symmetry by means of a simple angular inter-
polation, which proved successful for the Cl-+H, system. The approach takes advantage of the
oblate shape of the Hy molecule, which results in a relatively simple anisotropy of the inter-
action. To obtain the fourth diabatic surface (related to the nonadiabatic coupling element
of the hamiltonian matrix), a separate MRCI calculations are performed over the complete
range of geometries. To obtain three lowest nonrelativistic adiabatic PESs, the Hamiltonian in
the diabatic basis is diagonalized. The relativistic spin-orbit coupling effects are included by
using the formalism recently developed by Alexander, Manolopoulos, and Werner ,°" assuming
empirical value of the splitting parameters. The dependence of the PESs on the H, stretching
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coordinate is also incorporated and analysed.

7.3 Computational methods and results

7.3.1 Geometries and basis sets

The F-Hy complex is described in Jacobi coordinates (R, ). The R variable denotes the
distance between the center of the H, monomer and the F atom, and # denotes the angle between
the R vector and the Hs bond axis. 6 = 0° corresponds to the F---H-H collinear arrangement.
The Hy monomer stretch is described by r coordinate. Calculations were done for r=0.8, 1.0,
1.2, 1.4, 1.6, 1.8 and 2.0 bohr and distance R ranged from 1.5 A to 5.5 A. The origin of the
system of coordinates was placed at the center of the Hy molecule. In the calculations of the
diabatic energies, the Hy molecule was located along the x axis, and the z axis was perpendicular
to the triatomic plane. Calculations employed the augmented correlation-consistent polarized
basis sets of quadruple zeta quality (aug-cc-pvqz) basis function set of Dunning et al. 990!
CCSD(T) calculations (but not MRCI ones) included also bond functions, with the exponents:sp
0.9, 0.3, 0.1;d 0.6, 0.2 3® in the form of set: [3s3p2d] denoted as (332). Bond functions were
centered in the middle of the vector . Bond functions have been shown!!® to be both effective

and economical for a number of Van der Waals complexes including those with an open-shell
moiety 21,24 147,148

7.3.2 Ab wnitio adiabatic and diabatic potential energy surfaces

Building of the CC-M potentials is done in three steps:

1. accurate CCSD(T) calculations for the Cy, and Cy, geometries, with a large basis set,
to obtain benchmark interaction energies, see Sec. 7.3.3. The model diabats for the C,-
symmetry geometries are obtained by a simple Legendre-polynomial interpolation between
the Cy, and Cy, geometries.

2. MRCI calculations with smaller basis set to obtain nonadiabatic coupling (off-diagonal
derivative) matrix element and the fourth diabatic (off-diagonal) surface, see Sec. 7.3.4.
These calculations do not require neither the self-consistency corrections nor the counter-
poise correction.

3. The adiabatic PESs are obtained by diagonalizing the Hamiltonian matrix in terms of
diabatic basis set. See Sec. 7.3.5.

It should be stressed that the CC-M approach thus avoids the major pitfalls of MRCI.

All ab initio calculations reported in this paper were performed using MOLPRO package.?
The supermolecular method was used in calculations of three adiabatic potential energy sur-
faces. This method derives the interaction energy as the difference between the energies of the
dimer AB and the monomers A and B

AE™ = gV — B — B (7.1)

The superscript (n) denotes the level of ab initio theory. In the CCSD(T) calculations the use
of the above equation is straightforward, and free from arbitrary choices, as long as the dimer
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and monomer energies are calculated with the same dimer centered basis set to counterpoise the
basis set extension effect.”® The CCSD(T) method is well known to be very effective in recov-
ering electron correlation effects in Van der Waals complexes calculations,'®'” and is preferred
as long as the single-reference approach is valid. If not, one has to use the MRCI approach.
The MRCI calculations are more involved as they require the size consistency corrections and
counterpoise correction at the diabatic level. We describe application of MRCI in Sec. 7.3.4.

7.3.3 Model diabatic PESs
Legendre polynomial expansion

The CCSD(T) approach can provide us with very accurate results, close to saturation with
respect to basis set and correlation effects. It can be used with confidence for the lowest state
of a given symmetry, but also for excited states that can be adequately represented by a single
Slater determinant - e.g., when the excited state is related to a single-electron promotion from
one p orbital to another, orthogonal p orbital. The latter feature was exploited in our recent
study of the HCI-C1 Van der Waals complex ,'2% where two A’ states in the Van der Waals region
were well separated in a wide range of geometries. However, whereas formally the situation
in the Ho-F(?P) case is identical, the Hy molecule produces a much smaller splitting of the 2P
state of F, and a significant nonadiabatic mixing of two adiabatic A’ states takes place, which
culminates in the conical intersection for the collinear arrangement.

In our previuos work on CIl-Hs, the diabatic surfaces revealed a simple and regular shape.
For a given R, the #-dependance was monotonic between the C,, and C, geometries. On
this basis, we proposed the CC-M method which assumed the CCSD(T) interaction energies
for the Cy, and C,, geometries, and derived the interaction energies for the Cy; geometries
from the Legendre expansion truncated at L=2, which is equilvalent to the following angular
dependence:

HSM(R,r,0) = VACICSD(T) (R,7)sin” @ + V;CSD(T) (R,7)cos* @ (7.2)
HEEM(R, 71, 0) = VB2CSD(T) (R,7)sin” 6 + V;CSD(T) (R,7)cos®f (7.3)
HSEM (R, 0) = Vg P (R, r) sin? 0+ Viy P (R, ) cos? 0 (7.4)

In essence, it takes advantage of the simple elipsoidal symmetry of the electron density of
the Hy moiety in its ground state. The CC-M diabatic surfaces were prepared for the full range
of geometries using ab initio CCSD(T) results for the A;, By, and B, representations of the Cs,
symmetry and X% and II representations for the C.., symmetry.

2-D fitting

In the framework of the CC-M, the r-dependence has to be incorporated only for C,, and
Coow symmetries. The analytic expression is based on Taylor expansion in the r coordinate with
additional exponential r-dependent terms and the R-dependence is of the Degli Esposti-Werner

type: .
V(R,r)= |G (R)e (e e _7(R)N " L1 H (¢ (7.5)
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where

G (R) =) g (7.6)

2
H(&) =) hm™,
m=0

e="""Te 4, =0.74084 (7.7)

Te

and damping function,

T(R) = % (1 + tanh (1 + £2R)) (7.8)

The fitting procedure resulted in 2-D surfaces which represent ab initio data with root-mean-
square ranging from 1 cm ! to 8 cm . 2-dimensional fits were applied to model 3-dimensional
diabatic surfaces using equations 7.2, 7.3 and 7.4.

Contour plots of HFCM, HSSM and H{C™M for r = 0.7408 A are shown in Figures 7.1, 7.2,
and 7.3, respectively.

In Figures 7.1 and 7.2, a bold line indicates the crossing of diabats, H{"M=HS"M. It
originates at the region of X7-II conical intersection, at 6 = 0°).

7.3.4 MRCI calculations and fitting of fourth diabatic potential
MRCI calculations

MRCI calculations began with the determination of the state-averged CASSCF orbitals
which included all the F-moiety-related orbitals (except for 1s) as well as the o, and ¢ molec-
ular orbitals of hydrogen molecule in the active space. The state averaged CASSCF orbitals
allowed for all three states, 1A', 2A’, and 1A” .'22123 The subsequent internally contracted
MRCI calculations'!? 3 included all single and double excitations relative to the full-valence
CASSCEF reference wave functions. Calculations were performed for several values of interhy-
drogen distance r and in wide range of R and 6 variables. In the case of two A’ states, the
excitations relative to both reference states were included, and both states were optimized si-
multanously. This guarantees a balanced treatment in the regions of the conical intersections.*?

The diabatic surfaces provide more convenient representations for simulations of the Van der
Waals spectra of the system. These potentials contain information about couplings between the
adiabatic wavefunctions of the same symmetry. The adiabatic-diabatic transformation yields
diabatic states for which the non-adiabatic coupling matrix elements approximately vanish. The
diabatic states are obtained by an unitary orthogonal transformation of adiabatic states!'%® 109

Y

=y

B cosy sinvy ve (7.9

v —sin7y cosvy we

Ny

where the transformation angle v depends on the nuclear coordinates. The resulting diabatic
wavefunctions are no longer eigenstates of the electronic Hamiltonian. The Hamiltonian in the
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Figure 7.1: Contour plot of the modeled HC“~™ diabat. Values in ecm™", r = 0.7408 A.
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Figure 7.2: Contour plot of the modeled HSY ™ diabat. Values in em™", r = 0.7408 A.
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Figure 7.3: Contour plot of the modeled HSC ™ diabat. Values in em™", r = 0.7408 A.
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diabatic (py, py, p.) basis is not diagonal and the matrix elements are modeled as:

H, = HM (7.10)
Hy = HZTM
H33 — HCC—M

Hiy = (VM = Vo) cos ysiny

The transformation angle ~, so-called 'mixing angle’, is defined as the angle between the
vector of the singly occupied p orbital and the R vector. It is a function of Jacobi coordi-
nates of the system. Within a two-state model the mixing angle can in principle be obtained
by numerical integration of the non-adiabatic coupling matrix elements (NACMEs). We used
the method which uses the maximal overlap with orbitals of the reference geometry to calcu-
late mixing angle. This method calculates NACME in a approximate way using two slightly
displaced geometries and method of finite differences.

Since it is convenient to perform diabatic transformation in a system of coordinates with
one axis along the R vector, the actual v was redefined as:

’yR:’y—l—H—g (7.11)
The plot of v is shown in Figure 7.4. This figure clearly shows the region where the A’
states avoid crossing each other, and the point where the X" and II states cross. This is the
region where the mixing is the strongest and the angle in Eq. 7.9 reaches 45°. The conical
intersection occurs at F- - -H-H, § = 0°, R ~ 2.9 A. The intersection is related to the crossing
of ¥T and II, which switch there.
Contour plot of the Hy diabatic surface for » = 0.7408 A is shown in Figure 2.

3-D fitting

To fit 3-dimensional set of ab initio data for His we used analytical expression based on
the expansion in Legendre polynomials P} and Taylor expansion around r = r, interhydrogen
distance:

Hys (r,R,0) =V, (1, R, 0) + Vs (1, R, ) (7.12)
where
0 S iy 41 +1
5(a— bR)—cé—dg?
Vin (1, R, 0) ZZZg c,Rfe\/_ \| —— 5 ———P), (cos 0) (7.13)
(=1 =0 5=0
and

703
.C n—4 +1
Vas (1, R, 0) ZZC@ 2 ) Pl(n_4) (cos®),

n= =
r—Te

= ., Te=0.7408A (7.14)

Te

The fit contains 35 optimized parameters. The quality of the fit can be expressed in root-mean-
square value of 9 ecm™.
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Contour plot of the v mixing angle calculated in aug-cc-pvqz/tz basis set, r =

0.7408 A.
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7.3.5 Model nonrelativistic adiabatic PESs

To obtain adiabatic counterparts of the diabatic surfaces, the diabatic matrix:

Hy V2Hi, 0
HY = V2H5 Hy, 0 (7.15)

0 0 Hj;

was diagonalized. Global minima and stationary points of the modeled diabatic and adiabatic
surfaces are shown in Table 7.1. Contour plots of 1A’ and 2A’ adiabatic surfaces for r = r, are
shown in Figures 7.6 and 7.7, respectively.

Table 7.1:
Stationary points of modeled diabatic surfaces. Numbers in parentheses represent

values of ASW?7 potential. Values in cm™!.

Diabat ~ D,/cm ™! R./A 0. Type
HYCM  130.9(124.0) 2.55(2.55) 90(90) minimum
2.7(4.7) 3.35(3.45)  0(0) saddle point
HSC M 45.2(47.6)  3.35(3.35) 0(0)  minimum
10.8(9.0)  3.60(3.60) 90(90) saddle point
HEO™  45.2(47.6)  3.35(3.35) 0(0)  minimum
18.5(16.2)  3.45(3.5) 90(90) saddle point

7.4 Effect of Hy stretch

In Figures 7.8, 7.9, 7.10, 7.11 and 7.12, we show R- and r-dependent contour plots of V' (R, r)
for the Cy, symmetry (the X and IT states, Figures 7.8 and 7.9, respectively) and for the C,,
symmetry (the A, By and B, states, Figures 7.10, 7.11 and 7.12, respectively).

One can see that the A; and ¥ potentials, which define the ground adiabatic state, are
the most sensitive functions of r, while the other V' (R, r) potentials weakly depend on r. The
Vs potential reveals a weak Van der Waals minimum for large R with r close to r, and shorter,
and has a large well for small R and large r, where the reaction region is reached. The V,,
potential, for large R is everywhere attractive, and fairly wide and flat with respect to r. On
decreasing R and for small r, a repulsive bank is being raised, the attractive region is narrowed
to larger r only, where the potential falls steeply into the reactive region.

The behavior of V' (R, r) determines the behavior of the diabats and adiabats, according to
Eqgs. 7.2, 7.3 and 7.4. The changes of r have the most significant impact on the Hy; diabatic
surface, and only a mild effect on the other two, Ho, and Hz3. Compared with the plot for
r = r. (Figure 7.1) upon compressing Hy to r = 0.5292 A(Figure 7.13) the T-shaped geometry
minimum rises from -130 cm ! up to -80 cm !, the pass in the barrier at around 40° disappears,
while the collinear stationary point is slightly lowered (by a few cm™'). In other words, the



106 Chapter VII: Ab initio calculations of F-Hy PES.

ul
(@]

N
(&)}

1NN
(]
[ ‘ I N N ‘ I I | ‘

R/A
w
o

w
(@]

N
(@]

N
)]
‘\\\\‘\\\\‘\\\\‘\\\\‘

=
)]
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minimum energy path around F is now shallower and flatter, and the pass across the reaction
barrier is closed.

By contrast, stretching Hy to r = 0.8466 A (Figure 7.14) makes the T-shaped minimum
deeper - from -130 down to -170 cm ™! - whereas the saddle in the barrier goes down to -80
cm ! and widens. The collinear configuration is only slightly shallower, and at the stationary
point the interaction practically vanishes. In other words, stretching H, deepens the entrance
well but also broadens and lowers the pass across the reaction barrier.

The effect of stretching and compressing of Hy on the Hyy and Hsz diabats is minor, so we
do not show it in figures. The Hyy collinear stationary point goes up by 10 cm™! on squeezing
and a few cm~! on stretching. Hss is affected even less.

Since the reaction occures on the ground state adiabatic surface it is instructive to note the
changes of the 1A’ state. Qualitatively it is similar to the adiabat at r.. Upon stretching this
state becomes deeper, the well depth raising from 130 cm™" to 170 cm™'. At the same time,
the barrier for the reaction is lowered from 600 cm ! down to -100 cm ™!, and is shifted from
40° to 70°, that is closer to the T-shape geometry.

7.4.1 Spin-orbit coupling and model relativistic adiabatic PESs

Upon allowing for spin-orbit coupling of the halogen atom one obtaines two atomic terms:
P35 and ?Pyj, separated by Ago=404 cm™'. The interaction with Hy further splits the
Py, state into two states. To evaluate the resulting adiabatic potential energy surfaces we
used the procedure described by Alexander, Manolopoulos, and Werner .°" The matrix of the
electrostatic interaction plus the spin-orbit Hamiltonian was expressed in the basis set invariant
to time reversal (see Ref. °7 for details). Then the total matrix decouples:

H 0
HY + H = , (7.16)

0 Hf

where H is the 3x3 Hermitian matrix expressed in the basis invariant to time reversal:

Hy, -Vi—iV2B Vi
- R (717)

Vi—A

where V| = 2712Hy, Vi = (Hss + Hyy) /2 and Vy = (Hss — Hyy) /2. A and B are spin-orbit
matrix elements:

A =(10,|H°|1,) (7.18)

and
B = ([1,|H*°|%) (7.19)

where, after Alexander et al. ,°7 we use compact Caretesian notation for diabatic states:

I1,),|IL,), and |X), related to the projections of the electronic orbital and spin momenta along
the vector R. The bar above the |II,) state in Eq. 7.19 denotes § spin. We have found in the
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Van der Waals region that A and B are practically independent of R and #, and we fixed both
at the value of 1/3Ag0 (in the limit of large R, A equals B). Significant changes in A and
B start when the F atom approaches the H, molecule closer than at 2.0 A. On diagonalizing
the matrix Eq. 7.17, three adiabatic potential energy surfaces were obtained, shown in Figures
7.15, 7.16 and 7.17. They are numbered in the order of increasing energy. In the limit of large
R, the first two adiabatic PESs correlate to the ?Pj/, state of F, with the projection of j upon
the R vector equal to 3/2 and 1/2 for the ground state and the first excited state, respectively.
The third adiabat (Figure 7.17) correlates with the ?Py /o term of F atom.

One can see that the relativistic adiabatic surfaces significantly differ from non-relativistic
ones. The lowest adiabatic surface is now half as deep at the T-shaped minimum (D.=64
cm™') and considerably flattened, with a 24 ¢cm™! barrier for the H, rotation, around 40°,
and another local minimum for the collinear arrangement (D,=45 cm™"). The other adiabatic
surface related to the same 2Py /2 asymptotic limit is shallower, with a maximum at 90° and a
minimum at 0°. The third state, asymptotically separated by 404 cm ! SO coupling, resembles
the second in shape, but is slightly deeper.

The results for the lowest relativistic adiabatic PES may be compared with those of Werner
and collaborators.”'3° Our results of R,=2.8 A and D,=64 cm™" agree very well with the
more accurate values from Ref.:'° 2.85 A and 60.3 cm L.

These results corroborate the finding of Alexander, Manolopoulos and Werner that the
"spin-orbit coupling cannot be neglected in the region of the van der Waals minimum [...] and
significantly alters both the depth and position of the van der Waals well". The D, and R,
parameters of the three adiabatic PESs are listed in Table 7.2.

Table 7.2: Stationary points of modeled spin-orbit corrected adiabatic surfaces.
Adiabat  D,/cm™' R./A 0, Type

adiabat 1 64 2.80 90 minimum
adiabat 1 45 3.35 0 minimum
adiabat 2 19 3.40 37 minimum
adiabat 2 18 3.3 0 saddle
adiabat 2 14 3.50 90 saddle
adiabat 3 30 3.35 0 minimum
adiabat 3 26 3.30 90 saddle

7.5 Summary and Conclusions

Model diabatic potentials CC-M for the first three states of the Ho-F complex have been
derived from ab initio calculations for the T-shaped and collinear forms at the CCSD(T) level
of theory with a large basis set. The three adiabatic surfaces are in very good agreement
with those of Alexander, Stark and Werner from Ref. ,°7 as evidenced in Table 7.1, where
the parameters for all stationary points are compared. In addition, the height of the barrier
predicted by our model in the reaction channel is 1.66 kcal /mole, also very close to the Stark
and Werner % best estimate of 1.4540.25 kcal /mole. This is gratyfying, since the SW PES was
obtained by different ab initio method, and different scaling was applied.
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The 3-D CC-M PESs that includes functional dependance on the r distance have also been
proposed, fitted and analyzed. It has been found that the ground state is quite sensitive to the
changes in r. In particular, the height of the barrier lowers with stretching the Hy molecule,
and rises with compressing it.

The ground state diabatic nonrelativistic 1A” PES of Hy-F may be compared with the
the ground state 1A’ PES of Hy-Cl which was derived recently by us within the same CC-M
framework. The intermediate and long range of these surfaces are similar, with the Hy-Cl Van
der Waals well being deeper by 30 cm™! (D, of 164 cm™!), but with almost the same hindrance
for the H, rotation of ca. 85 cm™!. A major qualitative difference is in the character and
magnitude of the reaction barrier. The F-H, system with Hy at the equilibrium r, has a low
and narrow pass in the barrier of +750 cm™! at § = 40 — 45°. By way of contrast, we did not
found any such pass in the Cl-H, short range repulsive wall.!*6 In addition, Bian and Werner!°
have reported that the barrier for the reaction is collinear and more central, of 7.6 kcal /mole
— 2658 cm !, with the H, considerably stretched.

The characteristics of the PESs is dramatically changed upon allowing for the spin-orbit
effects. The relativistic ground state adiabatic PES is half as deep as the nonrelativistic one,
64 cm™! vs. 131 cm™!, and the barrier to the rotation of H, is shifted toward 40° and lowered
from 86 cm ! to 24 cm !, whereas the collinear saddle point transforms into a minimum. The
second and third adiabatic surfaces are also considerably flattened. These results agree with
the finding of Alexander, Manolopoulos and Werner that the "spin-orbit coupling cannot be
neglected in the region of the van der Waals minimum |...] and significantly alters both the
depth and position of the van der Waals well". Very good quantitative agreement with the
results of Ref.?” should be stressed. We also found that the spin-orbit coupling raises the
reaction barrier by about 200 cm !, with respect to the F+H, reactants, again in fairly good
accord with the more accurate result of 131 cm~! of Alexander, Manolopoulos and Werner?” .

Finally, it is worthwhile to stress that our CC-M approach is expected to provide reliable
PESs for other atom-H, complexes as well, which are in the entry channels of many reactions,
such as O+Hs, N+H,, S+Hs, etc.



CHAPTER VIII

Ab initio calculations and modeling of adiabatic and
diabatic potential energy surfaces of CI(*P)---Hy('X") Van
der Waals complex

8.1 Introduction

The hydrogen-abstraction reaction Cl + Hy — CIH + H is a fundamental reaction in chem-
ical kinetics and hence has been the subject of a great deal of experimental and theoretical
work .9%150°164 Along with the related system F-+H,, they constitute important paradigms in
the field of chemical reaction dynamics. The systems complement each other: while several of
their characteristics are similar, they were recently shown to reveal a most puzzling difference in
reactivity of the excited spin-orbit states. So far most of the ab initio calculations have focused
upon the transition state region. The most advanced potential energy surfaces available for
this reaction include semiempirical LEPS surfaces and the recent G3 surface, which resulted
from an ab initio modification of the LEPS model in the transition state region.'"%°® Both
surfaces are, however, too crude to identify a weakly-bound Van der Waals complex between
CI(®P) and Hy(*XT). Only very recently Bian and Werner reported a globally reliable ab initio
potential energy surfaces, BW1 and BW2, which included prediction and characterization of
this complex . Not only does this complex exist - with a T-shaped minimum on a ?A; surface of
175 em ™10 - but it also dramatically influences the reaction path and composition of products
in the Cl+HD reaction.?®1% Exact quantum mechanical calculations of reactive scattering on
a PES without Van der Waals forces predict that the HCl and DCI products will be produced
almost equally, whereas the same calculations on the BW2 surface show a strong preference for
the production of DCI. The latter is in agreement with the experimental findings of Lee and
Liu, and Dong et al. 54155166 Thege pioneering works of Bian and Werner, and Skouteris et
al. demonstrated that even comparatively weak Van der Waals interactions can no longer be
neglected in calculations of PESs of chemical reactions. At the same time, this is only the very
beginning of a serious research in this area. The BW2 surface is a global PES which includes
the entrance channel, barrier, and the exit channel regions. It was advanced using the IC-MRCI
method. The authors reported that even with their largest basis set neither the barrier height
nor the HCI dissociation energy was converged. To overcome this problem they resorted to
empirical scaling. It is interesting to determine whether the introduction of this empirical scal-
ing compromised the accuracy of the Van der Waals region. At the time of this writing, only
ground state’s adiabatic surface has been reported. A conical intersection between the ground

121
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and the first excited states of the A’ symmetry, which for a wide range of geometries are very
closely spaced and avoid crossing, increases the difficulties.

The goal of this paper was to focus on the Van der Waals region, and to provide accurate
ab initio PES for the first three states of Cl4+-Hs in the entrance channel fragment. The three
states arise from the interaction of Hy with the triply degenerate 2P Cl atom. The electron
configuration of Cl gives rise to 22 and 2II states in the C,, configuration, to 2A, 2B, 2B,
states in the triangular Cy, geometry, and to 12A’, 22A’ and 2A” states in C, geometries.

To calculate the interaction energies, a combination of the CCSD(T) method and the MR-
CISD+Q method was used. The essence of our approach is to model three lowest diabatic PES
by using accurate CCSD(T) interaction energies evaluated for two highly symmetrical config-
urations, Cy, collinear form and C,, T-shaped form. The fourth diabatic PES (related to the
nonadiabatic coupling matrix element) as well as the anisotropy of the interaction are evalu-
ated from separate MRCISD-+Q calculations with a medium-sized basis set over the complete
range of geometries. Two templates to model anisotropy of the diabatic PESs are proposed and
tested: MRCI-Scaled (CI-S) and CCSD(T)-Model (CC-M). The former employes a scaling of
the MRCI interaction energies for geometries 0°<#<90°, while the latter assumes a very sim-
ple linear combination of the T-shaped and collinear interaction energies with the coefficients
of sin?# and cos?#, respectively. To obtain three lowest adiabatic PESs, the hamiltonian in
the diabatic basis is diagonalized. Allowing for spin-orbit coupling effects is straightforward
by using the formalism recently developed by Alexander, Manolopoulos, and Werner ,°" and
assuming empirical value of the splitting parameters.

8.2 Computational methods and results

8.2.1 Geometries and basis sets

The CI-Hy complex is described in Jacobi coordinates (R, #). The R variable denotes the
distance between the center of the Hy monomer and the Cl atom, and # denotes the angle
between the F vector and the Hy bond axis. 6 = 0° corresponds to the Cl. - -H-H collinear
arrangement. The H, monomer was kept rigid at the interatomic separation r = 0.7408 A.
The origin of the system of coordinates was placed at the center of the Hy molecule. In
the calculations of the diabatic energies, the Hy molecule was located along the x axis , and
the z axis was perpendicular to the triatomic plane. Calculations employed the augmented
correlation-consistent polarized basis sets of double, triple, quadrupole and quintupole zeta
quality of Dunning et al. %' Some calculations included also bond functions of Tao and Pan
36 with the exponents:sp 0.9, 0.3, 0.1;d £0.6, 0.2;¢ 0.3, in the form of two sets: [3s3p2d| denoted
as (332) and [3s3p2d 2f 1g| denoted (33221) . Bond functions were centered in the middle of
the vector K. Bond functions were shown to be both effective and economical for a number of
Van der Waals complexes which included rare gas atoms 2124 147,148

8.2.2 Ab wnitio calculations of interaction energies

All calculations reported in this paper were performed using MOLPRO package.”® The
supermolecular method was used in calculations of three adiabatic potential energy surfaces.
This method derives the interaction energy as the difference between the energies of the dimer
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AB and the monomers A and B
AE™ = BV — EWY — B (8.1)

The superscript (n) denotes the level of ab initio theory. In the CCSD(T) calculations the use
of the above equation is straightforward, and free from arbitrary choices, as long as the dimer
and monomer energies are calculated with the same dimer centered basis set. The CCSD(T)
method is well known to be very effective in recovering electron correlation effects in Van der
Waals complexes calculations,'®'” and is preferred as long as the single-reference approach is
valid and efficient. If not, one has to use the MRCI approach. The MRCI calculations are
more involved as they require the size consistency corrections and counterpoise correction at
the diabatic level. We describe application of MRCI in Sec. 8.2.3.

8.2.3 MRCI calculations of adiabatic and diabatic surfaces

MRCI calculations began with the determination of the state-averged CASSCF orbitals
which assumed the Cl-moiety-related orbitals as follows: the 1s orbital frozen, the 2s and
2p orbitals doubly occupied, and the 3s and 3p orbitals active. We included also o, and o
molecular orbital in the active space. The state averaged CASSCF orbitals allowed for 122123 4]l
three states, 1A’, 2A’, and 1A”. The subsequent internally contracted MRCI calculations!'!? 13
included all single and double excitations relative to the full-valence CASSCF reference wave
functions. In the case of two A’ states, the excitations relative to both reference states were
included, and both states were optimized simultanously. This guarantees a balanced treatment
in the regions of the conical intersections.®?

The diabatic surfaces provide more convenient representations for simulations of the Van der
Waals spectra of the system. These potentials contain information about couplings between the
adiabatic wavefunctions of the same symmetry. The adiabatic-diabatic transformation yields
diabatic states for which the non-adiabatic coupling matrix elements approximately vanish. The
diabatic states are obtained by a unitary orthogonal transformation of adiabatic states!%®1%9

v

—ay

B cosy sinvy v 82)

v —siny cosvy we

N

where the transformation angle v depends on the nuclear coordinates. The resulting diabatic
wavefunctions are no longer eigenstates of the electronic Hamiltonian. The Hamiltonian in the
diabatic (py, py, p.) basis is not diagonal and the matrix elements are

HH = COS2 /Y‘/IA’ + sin2 ’Y‘/QA/ (83)
Hyy = sin® yVi 4 + cos® Y Vour
Hyy = (Viar — Vaur) cosysiny

The third diabatic state, Hss, is exactly equal to the 1A” adiabatic state.

The transformation angle ~, the so-called 'mixing angle’, is defined as the angle between
the vector of singly occupied p orbital and the R vector. This angle is a function of Jacobi
coordinates of the system, and depends on the orientation of the H, molecule. Contour plot of
the mixing angle is shown in Figure 8.1.
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Within a two-state model the mixing angle can in principle be obtained by numerical integra-
tion of the non-adiabatic coupling matrix elements (NACMESs) using the relation

dq

9| u
o 2A> . (8.4)

This is quite computationally demanding procedure, which suffers from the fact that the
NACMEs are strongly varying functions of the geometry and have poles at the conical in-
tersections. Also, in real systems the integration is not entirely path independent, due to the
admixture of further states.!'® Eq. 8.4 is only valid for the two-state model, and diabatization
procedure is approximate in any case for polyatomic molecules. Therefore, we used a less ex-
pensive methods which determine the mixing angle directly with reasonable accuracy.!'' One
of those methods is based on the transition angular momentum connecting the 1A” state with

two states of the A’ symmetry.
H<1A’ L, 1A”>H
- (8.5)

H<2A/ Ex‘ 1A">H

The second method uses the maximal overlap with orbitals of the reference geometry to calculate
mixing angle. This method calculates NACME in an approximate way using two slightly
displaced geometries and method of finite differences. Both methods gave very close results, so
finally we used mixing angle from the latter one.

Since it is expedient to perform diabatic transformation in a system of coordinates with one
of the axis along the R vector, the actual v was redefined as:

v = tan

7R:7+0—g (8.6)

The plot of v values is shown in Figure 1. The region where the A’ states avoid crossing
each other and where the mixing is the strongest is related to the angle in Eq. 8.2 of 45°.
For large R it corresponds to perpendicular approach, but around R ~ 4 A it abruptly turns
towards the collinear arrangement, where the conical intersection occurs at Cl- - -H-H, § = 0°,
R~ 3.25 A, and the crossinging of the ©* and II symmetries.

It is important to report here our finding that the vz angle is well reproduced by MRCISD
calculations with substantially smaller basis set, of double-zeta or triple-zeta quality. This is
shown in Figures 8.2, 8.3 and 8.4, where the mixing angle is plotted against 6 at selected
short, intermediate and long distances of 2.5 A, 3.2 A and 5.5 A | respectively.

This finding is of practical importance since one may use the angle v from relatively
cheaper calculations. It should also be stressed that also the CASSCF calculations provided a
very reasonable approximation to this angle.

Calculations of interaction energies as the difference of the dimer and monomer energies,
Eq. 8.1, requires consistent evaluation of these energies. The issue of consistency is particu-
larly challenging for the MRCI calculations since both the size consistency and the basis set
consistency corrections should be included. The latter requires correcting monomer energies
not only for the extension of the one-electron basis but also for the extension of many-electron
configuration states. Since the configurational consistency is practically impossible to achieve
(see Ref.!7), only standard counterpoise correction is applied. To ensure consistency upon
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dissociation at the same time, one uses the formula:'%®
V(R,0) = Eci_n, (R,0) — Ec; (R,0) — Ey, (R,0) — Asc (8.7)

where
AS’C = ECZ—Hg (OO) - ECZ (OO) - EH2 (OO) (88)

and all energies in Eq. 8.7 were calculated with dimer centered basis set. It is recommended,
after Alexander,'%® that the CP corrections are applied for diabatic rather than adiabatic en-
ergies. To obtain CP-corrected adiabatic interaction energies one should invert the diabatic
transformation.

Application of bond functions within MRCI proved to cause serious problems: the angle v
came out qualitatively distorted and the values of the interaction energies become suspect, see
Sec. 8.2.4.

The final diabatic Hyy, Hye, Ha3 and His, and adiabatic 1A’ and 2A’ (notice that A”=Hs3)
surfaces obtained at the MRCISD+Q/acpvqz/tz are shown in Figures 8.5, 8.6 , 8.7, 8.8, 8.9
and 8.10, respectively.

8.2.4 Benchmark CCSD(T) results for T- and L-geometries

To investigate basis set saturation in the region close to the minima for the T- and L-form,
the interaction energies were obtained with a sequence of basis set, and are listed in Tables 8.1,
8.2, 8.3.

Table 8.1:
Benchmark CCSD(T) results for T- and L-geometries. Results are corrected for

BSSE and calculations were performed in Cy, symmetry. Values in cm ™!

Basis A, II
avtz 130.0 68.4
avqz/tz 147.6 72.0
avqz 157.1 73.8
avhz 163.1 75.6
CBS 166.5 76.7
Basis-+bond functions

avqz/tz+332 163.8 75.9
avhz+33221 167.2 76.8

Both CCSD(T) and MRCISD-+Q results are compared. In the case of MRCISD-+Q calcu-
lations, we also show the results uncorrected for BSSE. In addition, the MRCISD+Q values
calculated both within the C,, and C; point groups of symmetry are shown, since they ap-
parently differ. The two-exponential formula of Peterson, Woon and Dunning '® for the CBS
limit was also tested:

fo=ae" ™V 4 pe D 4 fopg (8.9)
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Table 8.2:
e Benchmark CASSCF/MRCISD+Q results for T- and L-geometries. Results in

parentheses are not corrected for BSSE. Calculations were performed in Cs, sym-
metry. Values in cm™!

Basis A II
avtz 136.5 (177.3) 73.7 (120.5)
avqz/tz 168.3 (185.3) 88.9 (106.2)
avqz 173.4 (193.6) 89.0 (109.3)
avhz 171.4 (192.9) 84.7 (103.2)
CBS 170.1 (192.4)  82.1 (99.6)
Basis+bond functions

avqz/tz+332 141.5 67.5

Table 8.3:
e Benchmark CASSCF/MRCISD+Q results for T- and L-geometries. Results are

corrected for BSSE. Calculations were performed in C, symmetry. Values in cm

Basis A, II
avdz 92.0 69.0
avtz 130.0 100.0
avqz/tz 154.6 100.1
Basis-+bond functions

avqz/tz+332 287.3 2728

where three parameters: a, b and fopg were optimized and n denotes the basis set: n=2
coresponds to double-zeta, n=3 to triple-zeta, and so on.

The CCSD(T) energies converge smoothly and monotonically along the sequence of basis
sets: avtz, avqz, avdz and avbz+33221. In addition, the CBS limit for the avtz, avqz and avbz
sequence is extremely close to the avbz+33221 results . One can see that the values with bond
function and the values of the CBS limit nicely corroborate each other.

The MRCI results, however, reveal a less satisfactory behavior. The convergence along the
sequence of basis sets: avtz, avqz and avbz, is less smooth and not monotonic. The best results
are somewhat larger than the CCSD(T) results, and so are the related CBS limits. Since the
CP-correction, which is a correction for using one-electron dimer centered basis set rather than
monomer centered basis set for monomers, does not cover all basis set inconsistencies in the
MRCI case (because of configuration state functions inconsistncies in the monomer and dimer
calculations) one expects a larger BSSE error still present here than in the CCSD(T) case. One
can also see that the CBS limit of the CP-uncorrected energies is substantially larger than that
for the CP-corrected - a clear indication of a more serious basis set error.

An important observation, repeatedly reported in the literature before,'® 16%170 j5 that Mol-
pro’s MRCI gives different results when constrained to the Cy, or Cy, geometry, from those
left unconstrained within the C; symmetry. The differences are far from negligible and not
regular. For example, avtz basis set leads to 136 cm™! for the A; minimum and 74 cm~! for
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the IT minimum when the calculations use the Cy, symmetry. When the calculations use the
C, symmetry the related values are 130 cm ™! and 100 cm™!, respectively. We treat here the
Cy results as less reliable.

A final remark pertains the use of bond functions. The CCSD(T) energies in Table 8.1 are
nicely and rationally improved after including bond functions. By way of contrast, the MRCI
results are erratic. For instance, the Cy, MRCI avqz/tz+332 calculations gave much too small
interaction energies, whereas the C; MRCI avqz/tz+332 calculations yielded nonsensically large
energies. A plausible reason is that bond functions produce large BSSE, which, as already
mentioned, in the MRCI case cannot be fully counterpoised. We conclude that the bond
function should not be used within the MRCI framework.

Overall, very consistent results of CCSD(T) method and a good agreement with the best
MRCI energies give us confidence that the CCSD(T) interaction energies provide a reliable
benchmark to scale the MRCI PESs. The latter will be done in the next Sec. 8.2.5.

8.2.5 Model diabatic PESs

In the previous Sec., the CCSD(T) results for the T-shaped and collinear complexes were
shown to provide excellent benchmarks for the interaction energies in these particular arrange-
ments. Indeed, the CCSD(T) approach can provide us with very accurate results, close to
saturation with respect to basis set and correlation effects. It can be used with confidence
for the lowest state of a given symmetry, but also for excited states that can be adequately
represented by a single Slater determinant - for instance when the excited state is related to
a single-electron promotion from one p orbital to another, orthogonal p orbital. The latter
feature was exploited in our recent study of the HCI-Cl Van der Waals complex ,*?> where two
A’ states in the Van der Waals region were for a wide range of geometries are well separated.

By way of contrast, for the Hy-Cl(*P) complex the CCSD(T) proved to be unreliable for
the C, geometries. The plausible reason is that the interaction of the 2P Cl with H, is three
times as weak as with HCI (the 1A’ well depth is 163 cm™! for Hy-C1(?P) vs. 586 cm™" for HCI-
C1(*P)'?), and hence also the splitting 1A’-2A’ is much smaller. Consequently, nonadiabatic
mixing and multireference treatment of two adiabatic A’ states are more important in the
regions where the configurations are allowed to mix.

Therefore, in the area between the collinear and perpendicular arrangements the MRCI
method was used (see Sec. 8.2.3, which provided us with 3 surfaces and their nonadiabatic
coupling. Despite a smaller basis set without bond functions, the resulting adiabatic ener-
gies and the mixing angle were accurate enough to reliably reproduce the anisotropy of the
interaction caused by rotation of the Hy molecule.

Next, the highly accurate CCSD(T) results for the collinear and perpendicular geometries
were combined with the less saturated MRCI results to provide ab initio based model PESs
of much higher accuracy. Two models of such merging have been tested: a CI-S model and a
CC-M model.

CI-S PES was abtained by scaling the MRCISD+Q diabatic surfaces to the CCSD(T)
diabatic surfaces:

CCSD(T) (R) VCCSD(T) (R)

HES (R, 0) = HMRCL(R, ) | -2 sin @ + =

R N D (8.10)
VMRCI (R) Vé\/[RCI (R)



130 Chapter VIII: Ab initio calculations of CI-Hy PES.

VQCSD(T) (R) ‘ VCCSD(T) (R)
HQCZI_S (Ra 9) - H%VZIRCI (Ra 9) ‘B/ZMTI(R) Sln2 9 + ?/‘MTI(R) 0082 0 (811)
B2 I

where the superscript CCSD(T) denotes energies obtained at the
CCSD(T)/avqz/tz+332 level of theory and the subscripts refer electronic states. The coupling
between states of A’ symmetry was not scaled and kept at the MRCIT level of theory. Figures 8.11
and 8.12 show contour plots of the HY™ and HSIS, respectively.

Since we noticed a particularly simple shape of the diabatic surfaces, we proposed a simpler
model termed CC-M which describes the C; geometries with a simple angular interpolation.
The CC-M is defined:

HEEM (R, 0) = VPP (R) sin? 0 + Vi, ") (R) cos? 0 (8.12)
HSEM (R, 0) = V" (R) sin? 0 + Viy ") (R) cos? 0 (8.13)
HSEM (R, 0) = Vi P (R) sin? 0 + Viy "™ (R) cos? 0 (8.14)

It is worthwhile to note that the 2-D potentials defined by the above equations may be for-
mally generalized to 3-D potentials, by including dependence of the H-H distance and replacing
V(R) by V(R, ).

In the essence, it takes advantage of the simple elipsoidal symmetry of the electron density
of the Hy moiety in its ground state. The CC-model diabatic surfaces were prepared for the full
range of geometries using ab initio CCSD(T) results for T and L arrangements for the Ay, By,
By, ¥ and IT symmetries. Contour plots of HSCM HSCM HICM and ab initio A” surface are
shown in Figures 8.13, 8.14, 8.15 and 8.16, respectively. In the Figures 8.13 and 8.14 we plot
bold contour line (bold line starting from the region of ¥-II conical intersection for § = 0°),
where two diabats cross fulfilling condition H{FM=HSM,

For the sake of comparison with model H§S™ surface, we calculated the whole A” surface
at the CCSD(T) level. As the lowest state of the A” symmetry, this states is amenable to the
CCSD(T) treatment. The differences proved to be on the order of several tenths of wavenumbers
in the very short range, which is 1-4% of the repulsive energy values, and in the medium and
long range, on the order of 1 or less than 1 cm™'. The agreement is thus perfect, confirming
the high quality of the model surfaces.

8.2.6 Model nonrelativistic adiabatic PESs

To obtain adiabatic counterparts of the diabatic surfaces, the diabatic 2x2 matrix:

I Hll \/§H12
HY = (8.15)

\/§H12 H22

was diagonalized. The adiabatic PESs for the CC-M are compared with the ab initio adiabatic
MRCI PESs in Figures 8.9, 8.10 , 8.17 and 8.18. Figures 8.9 and 8.10 show the MRCI
adiabatic surfaces and Figures 8.17 and 8.18 show the CC-model adiabatic surfaces.

It turned out that both models, CI-S and CC-M provided very similar PES, both at adiabatic
and the diabatic levels of theory. The reason seems clear: the elipsoidal shape of Hy electron
density is faithfuly modeled by the simplest angular expansion Eqs. 8.12, 8.13, and 8.14.
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Global minima and stationary points of the modeled diabatic and adiabatic surfaces are shown
in Tables 8.4 and 8.5.

Table 8.4: Minima of modeled diabatic surfaces.
Diabat D,/cm™' R./A 6,
HEE-Y 163.8 3.0 90
HESM 759 375 0
HSS™M 759 3.75 0

Table8.5: Minima of modeled adiabatic surfaces. Adiabats 1, 2, 3 include relativistic spin-orbit
effect.
Adiabat  D,/cm™' R./A 0,
1A’ 163.8 3.00 90
1A’ 75.9 3.7 0
24’ 24.0 4.00 90
27’ 23.7 3.00 0
1A” 75.9 3.7 0
adiabat 1 87.9 3.30 90
adiabat 1 76.2 3.70 0
adiabat 2 41.7 3.6 0
adiabat 3 57.9 3.6 0

Positions and well depths of minima of modeled surfaces are also valid for scaled HSS
surfaces.

It is worthwhile to point out that for other diatoms as e.g. for Cl, or HCI such extrapolation
may not work due to more elaborate electron density shapes of these molecules. Yet, all
atom+H, complexes, which are in the entry channels of many reactions, such as O-+H,, N+Hs,
S+H,, etc. are expected to be easily amenable to our treatment.

8.2.7 Spin-orbit coupling and model relativistic adiabatic PESs

Allowing for spin-orbit coupling of the halogen atom one obtaines two atomic terms: *Pj /s
and 2Py, separated by Ago=882.4 cm . The interaction with Hy further splits the *P3/,
state into two states. To evaluate the resulting adiabatic potential energy surfaces we used the
procedure described by Alexander, Manolopoulos, and Werner .°” The matrix of the electro-
static interaction plus the spin-orbit Hamiltonian was expressed in the basis set invariant to
time reversal (see Ref. %7 for details). Then the total matrix decouples:

H 0

H + H = , (8.16)

0 Hf
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where H is the 3x3 Hermitian matrix expressed in the basis invariant to time reversal:

Hy —-Vi—iv2B W

Vim—A

where V1 = 271/2H12, VH = (H33 + HQQ) /2 and VQ == (H33 - H22) /2 A and B are spin—orbit
matrix elements:

A = i(IL,|H°|11,,) (8.18)
and

B = (I1,|H®°|%) (8.19)

We have found in the Van der Waals region that A and B are practically independent of R
and of the angle, and we fixed both at the value of 1/3Ago (in the limit of large R, A equals
B). Significant changes in A and B start when the Cl atom approaches the Hy molecule closer
than at 2.0 A. On diagonalizing the matrix Eq. 8.17 three adiabatic potential energy surfaces
were obtained, shown in Figures 8.19, 8.20 and 8.21. They are numbered in the order of
increasing energy.

In the limit of large R, the first two adiabatic PESs correlate to the 2P3/2 state of Cl, with
the projection of j upon the R vector equal to 3/2 and 1/2 for the ground state and the first
excited state, respectively. The third adiabat (Figure 8.21) correlates with 2Py /2 term of Cl
atom.

One can see that the relativistic adiabatic surfaces significantly differ from non-relativistic
ones. The lowest adiabatic surface is now half as deep at the T-shaped minimum (D,=88
cm ') and considerably flattened, with a 15 cm™! high barrier for the Hy rotation, around 40°,
and another local minimum for the collinear arrangement (D,=76 cm™'). The other adiabatic
surface related to the same %P5 /2 asymptotic limit is shallower, with a maximum at 90° and a
minimum at 0°. The third state, asymptotically separated by 882 cm™' SO coupling, resembles
the second in shape, but is slightly deeper. These results are in qualitative agreement with
the finding of Alexander, Manolopoulos and Werner®” that the "spin-orbit coupling cannot be
neglected in the region of the Van der Waals minimum [...| and significantly alters both the
depth and position of the van der Waals well". The D, and R, parameters of the three adiabatic
PESs are listed in Table 8.5.

8.3 Summary and Conclusions

Two model potentials for the Hy+Cl complex were constructed using accurate ab initio
CCSD(T) and MRCI calculations: MRCI-Scaled (CI-S) and CC-Model (CC-M).

For the lowest adiabatic state, they may be compared with the globally valid potential of
Bian and Werner, BW2 .15 Our surfaces are in very good qualiatative agreement with the
BW2 one. The quantitative characteristcs of the T-shaped minimum and the L saddle point
somewhat differ, BW2 being 10 cm ™! deeper at the minimum, and revealing a 15 cm~! smaller
barrier for the rotation of the Hy molecule.

We have recently adopted a similar approach for two other related complexes, F+H,'™ and
Br+H,.!'™ It is interesting to compare the depth of related stationary points, cf. Table ?7?.

The stationary points were obtained at the CCSD(T) level of theory. One can see that the
T-shaped minimum is 30 cm™! deeper for Cl than F, but Br is only 5 cm~! more bound than
Cl. For the collinear arrangement, which may be identified with the barrier for rotation of H,

one can notice that the halogen atoms differ only slightly in this respect, the barrier ranging
fram 9 cm—L (Rr) ta R7 cm—L (C1) TInterectinelvy Werner and collabharatare 97,180 ) 33+ o
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Comparison of vz mixing angle calculated in various basis sets and methods. Dis-
tance is 5.5 A.
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Chapter VIII: Ab initio calculations of CI-Hy PES.
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Chapter VIII: Ab initio calculations of CI-Hy PES.

Figure 17
90 — T Ty Crr T 1 ‘ !
INIIIIIIIHH‘|\ RN | | I
-y RN | ! i
\ I T T T T O O R A ! | !
N | ! [ !
PO | -10
I e T T B T ‘
1 T T T T T I | 1 |
L ) | |
1 T T T T T T T IR | | !
1 tadh | |
[ T R T e U B | !
ot 1-35 0 \ \ \
b 400 v 0 ! !
L O > I B B \ \ !
e 80y \ \
- 11550 0 0y v \ \ \
I [T T Yo 1 T R L O S B \ \ \
i) (Y-S U T S O R B U \ \ \
ﬁ T e T T T S S R S \ \
2 L L U U L B \ \
L T W O S W TR W \ \
L S U S S \ \
LS T T T S B \ \
[ T T T T N R B \ \
(S VO T T O S S T B \ \
L T T T T S T S T \ \
L T T T O S T T T \ |
[ T T T T R T | |
[ T T T T T T | |
[ T T T T T B | |
A | |
” A | |
e e N I I
100 W R I |
T W E ‘l [ T N S R T | |
07‘ 1 ‘un‘umu‘m‘\‘i R B B e B e e
2.5 3.0 3.5 4.0 4.5 5.0 5.5
R/A

Figure 8.19:
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Contour plot of the spin-orbit corrected adiabat 3, which correlates to C1(*P3)5).
Values in cm 1.



CHAPTER IX

Summary

The most important achievements of this dissertation are the following:

Modeling of the two-dimensional PES of Ar-HCN Van der Waals complex from ab initio
interaction energies and calculations of the ro-vibration spectra by means of the colloca-
tion method.

Modeling of the two-dimensional PES of Ar-COs from ab initio interaction energies and
calculations of the ro-vibration spectra by means of the collocation method. Calculation
of the second virial coefficient, in particular the first-order quantum correction thereto.

Ab initio calculations and modeling of the PESs of Rg-S, where Rg=He, Ne, Ar, Kr, Xe.
The potentials proved to be competitive to those empirically determined from the elastic
and inelastic collision scattering experiments.

Ab initio calculations and modeling of the PESs of the first three states: 1A’, 2A’, and
1A” related to the interaction of the ground state (P) atom with the ground state HCI
molecule. These calculations represent the first reliable ab initio treatment of the HCI-
Cl Van der Waals complex in the literature. Very high accuracy has been achieved
due to judicious application of the CCSD(T) approach for all states, including careful
elimination the BSSE by rotation of ghost monomers. The MRCI calculations have been
used to provide the mixing angle of the A’ symmetry states.

A novel approach to modeling of three-dimensional PESs of the Hy-X (X stands for an
open-shell atom) complexes has been designed and applied. The angular dependence of
this potentials is modeled by a simple Legendre-polynomial interpolation. between the
T-shaped (Cg,) and collinear geometries (Cy,), accurately calculated ab initio at the
CCSD(T) level of theory with a large basis set. The nonadiabatic coupling (off-diagonal
derivative) matrix element and the fourth, off-diagonal, diabatic surface are determined
by separate multireference configuration interaction (MRCI) calculations with a medium-
sized basis set. The method has been used for Hy-F, Hy-Cl and Hy-Br. Three diabatic
and adiabatic potential energy surfaces (PESs) in each case have been obtained, both the
nonrelativistic and relativistic (including spin-orbit coupling). Excellent agreement with
the ab initio potentials of Stark and Werner for Ho-F has been obtained. The Author’s
H,-Cl and Hs-Br are expected to be the best avialable to date for these systems.
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